Arithmetic of Some Zeta Function Connected with the Eigenvalues of the Laplace-Beltrami Operator

Akio Fujii

§ 1. Introduction

Let $\lambda_{0}=0 \leqq \lambda_{1} \leqq \lambda_{2} \leqq \cdots$ run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator on $L^{2}(H / \Gamma)$, where H is the upper half of the complex plane and we take $\Gamma=P S L(2, Z)$. It is well known that $\lambda_{1}>\frac{1}{4}$. We put $\lambda_{j}=\frac{1}{4}+r_{j}^{2}$ for $j \geqq 0$. In our previous work [7], we have introduced and studied the zeta function defined by

$$
Z_{\alpha}(s)=\sum_{r_{j}>0} \frac{\sin \left(\alpha r_{j}\right)}{r_{j}^{s}}
$$

where α is any positive number and the series is convergent for $\operatorname{Re} s>1$. Using the Selberg's trace formula, which will be stated below, we have shown that $Z_{\alpha}(s)$ is an entire function for any positive α. In this paper we are concerned with the arithmetical properties of the values of $Z_{\alpha}(s)$ at $s=1$ or $s=0$. In particular, we obtain some new expressions of the values of Dirichlet L-functions at $s=1$ and a new proof of Dirichlet's class number formula for the real quadratic number fields.

To explain a general principle, we recall a primitive situation. Let $\zeta(s)$ be the Riemann zeta function and let γ run over the positive imaginary parts of the zeros of $\zeta(s)$. We have introduced in [5] the zeta function defined by

$$
\zeta_{\alpha}(s)=\sum_{\gamma>0} \frac{\sin (\alpha \gamma)}{\gamma^{s}}
$$

where α is any positive number and the series is convergent for $\operatorname{Re} s>0$. We have shown under the Riemann Hypothesis that this is entire for any positive α. The value of $\zeta_{\alpha}(s)$ at $s=1$ has been known long before by Guinand [9]. Namely, $\zeta_{\alpha}(1)$ as $\alpha \rightarrow \infty$, is essentially

$$
-\frac{1}{2} e^{-(1 / 2) \alpha}\left(\sum_{n \leq e^{\alpha}} \Lambda(n)-e^{\alpha}\right),
$$

where $\Lambda(n)$ is the von Mangoldt function defined by

