Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 237-260

Arithmetic of Some Zeta Function Connected with the Eigenvalues of the Laplace-Beltrami Operator

Akio Fujii

§1. Introduction

Let $\lambda_0 = 0 \leq \lambda_1 \leq \lambda_2 \leq \cdots$ run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator on $L^2(H/\Gamma)$, where *H* is the upper half of the complex plane and we take $\Gamma = PSL(2, \mathbb{Z})$. It is well known that $\lambda_1 > \frac{1}{4}$. We put $\lambda_j = \frac{1}{4} + r_j^2$ for $j \geq 0$. In our previous work [7], we have introduced and studied the zeta function defined by

$$Z_{\alpha}(s) = \sum_{r_j>0} \frac{\sin(\alpha r_j)}{r_j^s},$$

where α is any positive number and the series is convergent for Re s>1. Using the Selberg's trace formula, which will be stated below, we have shown that $Z_{\alpha}(s)$ is an entire function for any positive α . In this paper we are concerned with the arithmetical properties of the values of $Z_{\alpha}(s)$ at s=1 or s=0. In particular, we obtain some new expressions of the values of Dirichlet *L*-functions at s=1 and a new proof of Dirichlet's class number formula for the real quadratic number fields.

To explain a general principle, we recall a primitive situation. Let $\zeta(s)$ be the Riemann zeta function and let γ run over the positive imaginary parts of the zeros of $\zeta(s)$. We have introduced in [5] the zeta function defined by

$$\zeta_{\alpha}(s) = \sum_{r>0} \frac{\sin(\alpha r)}{r^{s}},$$

where α is any positive number and the series is convergent for Re s>0. We have shown under the Riemann Hypothesis that this is entire for any positive α . The value of $\zeta_{\alpha}(s)$ at s=1 has been known long before by Guinand [9]. Namely, $\zeta_{\alpha}(1)$ as $\alpha \to \infty$, is essentially

$$-\frac{1}{2}e^{-(1/2)\alpha}\left(\sum_{n\leq e^{\alpha}}\Lambda(n)-e^{\alpha}\right),$$

where $\Lambda(n)$ is the von Mangoldt function defined by

Received April 24, 1986.