Some Problems of Diophantine Approximation and a Kronecker's Limit Formula

Akio Fujii

§ 1. Introduction

Let α be a positive irrational number. It has been the subject of many mathematicians (e.g. Sierpinski [24], Lerch [20], Weyl [30], Hecke [12], Hardy-Littlewood [8]-[11], Behnke [4] [5], Ostrowski [21], Spencer [27], Sós [25] [26], Kesten [15], Erdös [6], Lang [19] and ...) to study as precise as possible the asymptotic behavior of the sum

$$
\sum_{n \leqq X}\left(\{\alpha n\}-\frac{1}{2}\right)
$$

as X tends to ∞, where $\{y\}$ is the fractional part of y and n runs over the integers $\geqq 1$. It does not seem that even for a quadratic irrational α this sum is understood in a satisfactory way.

Towards this problem Hecke [12] has introduced and studied the zeta function defined by

$$
Z_{\alpha}(s)=\sum_{n=1}^{\infty} \frac{\{\alpha n\}-\frac{1}{2}}{n^{s}} \quad \text { for } \operatorname{Re}(s)>1 .
$$

If $\alpha=\sqrt{D}$ or $1 / \sqrt{D}, D \equiv 2$ or $3(\bmod 4)$ and D is a square free integer $\geqq 1$, then he has shown that $Z_{\alpha}(s)$ can be continued analytically to the whole complex plane with simple poles at most at the points

$$
s=-2 k \pm 2 \pi i \frac{n}{\log \eta_{D}}, \quad k, n=0,1,2, \ldots
$$

where η_{D} is the fundamental unit of the quadratic number field $Q(\sqrt{ } \bar{D})$ or the square of it. As a result, he has obtained an explicit formula for the Riesz mean of the second order. Precisely, he has shown that for the above α and for any positive δ,

