Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 215–236

Some Problems of Diophantine Approximation and a Kronecker's Limit Formula

Akio Fujii

§1. Introduction

Let α be a positive irrational number. It has been the subject of many mathematicians (e.g. Sierpinski [24], Lerch [20], Weyl [30], Hecke [12], Hardy-Littlewood [8]–[11], Behnke [4] [5], Ostrowski [21], Spencer [27], Sós [25] [26], Kesten [15], Erdös [6], Lang [19] and \cdots) to study as precise as possible the asymptotic behavior of the sum

$$\sum_{n\leq X}\left(\{\alpha n\}-\frac{1}{2}\right)$$

as X tends to ∞ , where $\{y\}$ is the fractional part of y and n runs over the integers ≥ 1 . It does not seem that even for a quadratic irrational α this sum is understood in a satisfactory way.

Towards this problem Hecke [12] has introduced and studied the zeta function defined by

$$Z_{\alpha}(s) = \sum_{n=1}^{\infty} \frac{\{\alpha n\} - \frac{1}{2}}{n^s} \quad \text{for } \operatorname{Re}(s) > 1.$$

If $\alpha = \sqrt{D}$ or $1/\sqrt{D}$, $D \equiv 2$ or 3 (mod 4) and D is a square free integer ≥ 1 , then he has shown that $Z_{\alpha}(s)$ can be continued analytically to the whole complex plane with simple poles at most at the points

$$s = -2k \pm 2\pi i \frac{n}{\log \eta_D}, \quad k, n = 0, 1, 2, \cdots$$

where η_D is the fundamental unit of the quadratic number field $Q(\sqrt{D})$ or the square of it. As a result, he has obtained an explicit formula for the Riesz mean of the second order. Precisely, he has shown that for the above α and for any positive δ ,

Received April 24, 1986.