Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 193–214

On an Application of Zagier's Method in the Theory of Selberg's Trace Formula

Eiji Yoshida

Introduction

Let *H* be the complex upper half plane, and put $G=PSL(2, \mathbb{R})$, $\Gamma=PSL(2, \mathbb{Z})$. Then, the well-known Selberg trace formula holds for the Hilbert space $L^2(\Gamma \setminus H)$. Let furthermore $\omega: z \to -\bar{z}$ be the reflection with respect to the imaginary axis, and let $\tilde{G} = \langle G, \omega \rangle$ be the group generated by *G* and ω . Then, the triple ($\tilde{G}, H, 1$) turns out to be a weakly symmetric Riemannian space in the notation of Selberg (§ 1). Therefore, it is possible to investigate the trace formula for the Hilbert space $L^2(\tilde{\Gamma} \setminus H)$ with $\tilde{\Gamma} = \langle \Gamma, \omega \rangle$.

The space $L^2(\Gamma \setminus H)$ has the direct sum decomposition $L^2(\Gamma \setminus H) = V_e$ $\bigoplus V_o$, where V_e and V_o are defined by $V_e = \{f \in L^2(\Gamma \setminus H) | f(\omega z) = f(z)\}, V_o = \{f \in L^2(\Gamma \setminus H) | f(\omega z) = -f(z)\}$ respectively, in accordance with the operation of ω . Since it is clear that $V_e = L^2(\tilde{\Gamma} \setminus H)$, the trace formulas for $L^2(\tilde{\Gamma} \setminus H)$ and for V_e are the same.

In fact, Venkov [8: Chap. 6] presented trace formulas for V_e and V_o in more general cases where the discontinuous group has an ω -invariant fundamental domain.

On the other hand, Zagier [10] gave a new method to derive the trace formulas in the case of $\Gamma = PSL(2, \mathbb{Z})$, considering an integral of the form

$$I(s) = \int_{\Gamma \setminus H} K_0(z, z) E(z, s) dz \quad (\S 2).$$

In the present paper, we shall prove the trace formula for V_e , i.e., for $L^2(\tilde{\Gamma} \setminus H)$ by means of Zagier's method in the case of $\Gamma = PSL(2, \mathbb{Z})$ (§3 and Theorem 2), and add an explicit form of the trace formula for V_o as a direct consequence of the trace formulas for $L^2(\Gamma \setminus H)$ and V_e (Theorem 3).

§ 1. Weakly symmetric Riemannian space

Let S be a Riemannian manifold with a positive definite metric $ds^2 = \sum g_{ij} dx^i dx^j$. The mapping of S onto itself is called an isometry if it holds

Received February 4, 1986.