A Tripling Symbol for Central Extensions of Algebraic Number Fields

Hiroshi Suzuki

Let K / k be a finite abelian extension of a finite algebraic number field and M be a Galois extension of k which contains K. Denote by $\hat{K}_{M / k}$ and $K_{M / k}^{*}$ the maximal central extension of K / k in M and the genus field of K / k in M. Since K / k is abelian, $K_{M / k}^{*}$ coincides with the maximal abelian extension of k in M. In general, the Galois group $G\left(\hat{K}_{M / k} / K_{M / k}^{*}\right)$ is isomorphic to a quotient group of the dual $M(G)=H^{-3}(G, Z)$ of the Schur multiplier $H^{2}(G, \boldsymbol{Q} / \boldsymbol{Z})$ of G. If M is enough large, $G\left(\hat{K}_{M / k} / K_{M / k}^{*}\right)$ is isomorphic to $M(G)$. In such a case, we call M abundant for K / k.

Furuta [2] gives a prime decomposition symbol [d_{1}, d_{2}, p] which indicates the decomposition in $\hat{K}_{M / k} / K_{M / k}^{*}$ of a prime p which is degree 1 in $K_{M / k}^{*}$, where $k=\boldsymbol{Q}, K=\boldsymbol{Q}\left(\sqrt{d_{1}}, \sqrt{\overline{d_{2}}}\right)$ and M is a ray class field of K which is abundant for K / k. Also it proves the inversion formula $\left[p_{1}, p_{2}, p_{3}\right]=$ [p_{1}, p_{3}, p_{2}] except only a case.

Akagawa [1] extended this symbol to ($x, y, z)_{n}$ for any kummerian bicyclic extension $K=k(\sqrt[n]{x}, \sqrt[n]{y})$ over any base field k with serveral conditions which make $(x, y, z)_{n}$ and $(x, z, y)_{n}$ defined and the inversion formula $(x, y, z)_{n}(x, z, y)_{n}=1$ be true. This contains the proof of the excepted case of Furuta [2].

In this paper, we extend the symbol [, ,] as a character of the number knot modulo \mathfrak{m} of K / k with \mathfrak{m} being a Scholz conductor of K / k which is defined in Heider [4]. The character is defined by using the inverse map $H^{-1}\left(G, C_{K}\right) \cong H^{-3}(G, \boldsymbol{Z})$ (of Tate's isomorphism), which is obtained by translating the norm residue map of Furuta [3], which is written in ideal theoretic, into idele theoretic. In our definition, the extension K / k may be any bicyclic extension $K=k_{\chi_{1}} \cdot k_{\chi_{2}}$ with χ_{1}, χ_{2} being global characters. But the symbol is of type (χ_{1}, χ_{2}, c), where c is contained in the number knot. So we can consider the inversion formula only in the case when χ_{1} and χ_{2} are Kummer characters $\chi_{a}^{(n)}$ and $\chi_{b}^{(n)}$. When that is the case, we put $(a, b, c)_{n}=\left(\chi_{a}^{(n)}, \chi_{b}^{(n)}, c\right)$ and calculate $(a, b, c)_{n}+(a, c, b)_{n}$ (which are written additively in this paper). We approach this result to a necessary and sufficient condition of the inversion formula $(a, b, c)_{n}+(a, c, b)_{n}=0$, by

[^0]
[^0]: Received March 20, 1985.

