Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 9–24

A Tripling Symbol for Central Extensions of Algebraic Number Fields

Hiroshi Suzuki

Let K/k be a finite abelian extension of a finite algebraic number field and M be a Galois extension of k which contains K. Denote by $\hat{K}_{M/k}$ and $K_{M/k}^*$ the maximal central extension of K/k in M and the genus field of K/k in M. Since K/k is abelian, $K_{M/k}^*$ coincides with the maximal abelian extension of k in M. In general, the Galois group $G(\hat{K}_{M/k}/K_{M/k}^*)$ is isomorphic to a quotient group of the dual $M(G) = H^{-3}(G, \mathbb{Z})$ of the Schur multiplier $H^2(G, \mathbb{Q}/\mathbb{Z})$ of G. If M is enough large, $G(\hat{K}_{M/k}/K_{M/k}^*)$ is isomorphic to M(G). In such a case, we call M abundant for K/k.

Furuta [2] gives a prime decomposition symbol $[d_1, d_2, p]$ which indicates the decomposition in $\hat{K}_{M/k}/K_{M/k}^*$ of a prime p which is degree 1 in $K_{M/k}^*$, where k = Q, $K = Q(\sqrt{d_1}, \sqrt{d_2})$ and M is a ray class field of K which is abundant for K/k. Also it proves the inversion formula $[p_1, p_2, p_3] = [p_1, p_3, p_2]$ except only a case.

Akagawa [1] extended this symbol to $(x, y, z)_n$ for any kummerian bicyclic extension $K = k(\sqrt[n]{x}, \sqrt[n]{y})$ over any base field k with serveral conditions which make $(x, y, z)_n$ and $(x, z, y)_n$ defined and the inversion formula $(x, y, z)_n(x, z, y)_n = 1$ be true. This contains the proof of the excepted case of Furuta [2].

In this paper, we extend the symbol [,] as a character of the number knot modulo m of K/k with m being a Scholz conductor of K/k which is defined in Heider [4]. The character is defined by using the inverse map $H^{-1}(G, C_K) \cong H^{-3}(G, Z)$ (of Tate's isomorphism), which is obtained by translating the norm residue map of Furuta [3], which is written in ideal theoretic, into idele theoretic. In our definition, the extension K/k may be any bicyclic extension $K=k_{\chi_1} \cdot k_{\chi_2}$ with χ_1, χ_2 being global characters. But the symbol is of type (χ_1, χ_2, c) , where c is contained in the number knot. So we can consider the inversion formula only in the case, we put $(a, b, c)_n = (\chi_a^{(n)}, \chi_b^{(n)}, c)$ and calculate $(a, b, c)_n + (a, c, b)_n$ (which are written additively in this paper). We approach this result to a necessary and sufficient condition of the inversion formula $(a, b, c)_n + (a, c, b)_n = 0$, by

Received March 20, 1985.