Advanced Studies in Pure Mathematics 8, 1986 Complex Analytic Singularities pp. 437-460

On the Resolution of the Three Dimensional Brieskorn Singularities

Mutsuo Oka

§1. Introduction

Let $f(z_0, \dots, z_n)$ be a germ of an analytic function at the origin with an isolated critical point at z=0 and f(0)=0. We assume that the Newton boundary $\Gamma(f)$ is nondegenerate. Let $V=f^{-1}(0)$ and let Σ^* be a simplicial subdivision of the dual Newton diagram. Then there is a resolution $\pi: \tilde{V} \to V$ which is associated with Σ^* . For each strictly positive vertex P of Σ^* such that dim $\Delta(P) \ge 1$, there is a corresponding exceptional divisor E(P). The purpose of this paper is to study the above resolution and to study the geometry of E(P) in the case that n=3 and $f(z) = z_0^{a_0} + z_1^{a_1} + z_2^{a_2} + z_3^{a_3}$ with P being the weight vector of f. In Section 2, we will recall basic notations and the construction of the resolution of $V=f^{-1}(0)$. In Section 3, we will prove an isomorphism theorem about the exceptional surface E(P) (Theorem (3.6)) which is one of the main results of this paper. In Section 4, we give a necessary and sufficient condition about $a = (a_0, a_1, a_2, a_3)$ for E(P) to be a rational surface or a K3surface. (Theorem (4.1) and Theorem (4.2)). There are 14 cases for E(P)to be a rational surface and 22 cases for E(P) to be a K3-surface up to Theorem (3.6). In Section 5, we will give the proof of Theorem (4.1) and Theorem (4.2).

§ 2. Preliminaries

Let $f(z) = \sum_{\nu} a_{\nu} z^{\nu}$ be the Taylor expansion of f. The Newton polygon $\Gamma_{+}(f)$ is the convex hull of $\bigcup \{\nu + (R^{+})^{n+1}; a_{\nu} \neq 0\}$ and the union of its compact faces is denoted by $\Gamma(f)$ which is called the Newton boundary of f. Let N^{+} be the set of the positive vectors of R^{n+1} which are considered to be in the dual space of R^{n+1} through the Euclidean inner product. For each $P \in N^{+}$, let d(P) be the minimal value of $\{P(x); x \in \Gamma_{+}(f)\}$ and let $\Delta(P) = \{x \in \Gamma_{+}(f); P(x) = d(P)\}$. Two vectors P and Q in N^{+} are said to be equivalent if and only if $\Delta(P) = \Delta(Q)$. The

Received December 26, 1984.

Revised May 29, 1985.