On the Resolution of the Three Dimensional Brieskorn Singularities

Mutsuo Oka

§ 1. Introduction

Let $f\left(z_{0}, \cdots, z_{n}\right)$ be a germ of an analytic function at the origin with an isolated critical point at $z=0$ and $f(0)=0$. We assume that the Newton boundary $\Gamma(f)$ is nondegenerate. Let $V=f^{-1}(0)$ and let Σ^{*} be a simplicial subdivision of the dual Newton diagram. Then there is a resolution $\pi: \tilde{V} \rightarrow V$ which is associated with Σ^{*}. For each strictly positive vertex P of Σ^{*} such that $\operatorname{dim} \Delta(P) \geqq 1$, there is a corresponding exceptional divisor $E(P)$. The purpose of this paper is to study the above resolution and to study the geometry of $E(P)$ in the case that $n=3$ and $f(z)=z_{0}^{a_{0}}+z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ with P being the weight vector of f. In Section 2, we will recall basic notations and the construction of the resolution of $V=f^{-1}(0)$. In Section 3, we will prove an isomorphism theorem about the exceptional surface $E(P)$ (Theorem (3.6)) which is one of the main results of this paper. In Section 4, we give a necessary and sufficient condition about $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ for $E(P)$ to be a rational surface or a $K 3$ surface. (Theorem (4.1) and Theorem (4.2)). There are 14 cases for $E(P)$ to be a rational surface and 22 cases for $E(P)$ to be a $K 3$-surface up to Theorem (3.6). In Section 5, we will give the proof of Theorem (4.1) and Theorem (4.2).

§ 2. Preliminaries

Let $f(z)=\sum_{»} a_{\nu} z^{\nu}$ be the Taylor expansion of f. The Newton polygon $\Gamma_{+}(f)$ is the convex hull of $\cup\left\{\nu+\left(R^{+}\right)^{n+1} ; a_{\nu} \neq 0\right\}$ and the union of its compact faces is denoted by $\Gamma(f)$ which is called the Newton boundary of f. Let N^{+}be the set of the positive vectors of R^{n+1} which are considered to be in the dual space of R^{n+1} through the Euclidean inner product. For each $P \in N^{+}$, let $d(P)$ be the minimal value of $\left\{P(x) ; x \in \Gamma_{+}(f)\right\}$ and let $\Delta(P)=\left\{x \in \Gamma_{+}(f) ; P(x)=d(P)\right\}$. Two vectors P and Q in N^{+}are said to be equivalent if and only if $\Delta(P)=\Delta(Q)$. The

