Advanced Studies in Pure Mathematics 4, 1984 Group Representations and Systems of Differential Equations pp. 331–390

A Description of Discrete Series for Semisimple Symmetric Spaces

Toshio Oshima and Toshihiko Matsuki

§1. Introduction

Let G be a connected real semisimple Lie group, σ an involution of G, and H the connected component of the fixed-point group G^{σ} containing the identity. Then G/H is called a semisimple symmetric space ([1], [5]). We assume in this paper that G is a real form of a complex Lie group G_c . When G/H satisfies the condition

(1.1) $\operatorname{rank}(G/H) = \operatorname{rank}(K/K \cap H),$

Flensted-Jensen [5] constructed countably many discrete series for G/H. Here K is a σ -stable maximal compact subgroup of G and "discrete series for G/H" are equivalence classes of the representations of G on minimal closed G-invariant subspaces in $L^2(G/H)$. In this paper we give a theorem that describes all the discrete series for G/H. Especially there is no discrete series when rank $(G/H) \neq \operatorname{rank}(K/K \cap H)$.

The result of this paper can be described as follows.

Let g be a semisimple Lie algebra and σ an involution (σ^2 =identity) of g. Fix a Cartan involution θ such that $\sigma\theta = \theta\sigma$. Let $g = \mathfrak{h} + \mathfrak{q}$ (resp. $g = \mathfrak{k} + \mathfrak{p}$) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ). Let g_c be the complexification of g and let g^d , \mathfrak{k}^d and \mathfrak{h}^d be subalgebras in \mathfrak{g}_c defined by

$$g^{d} = \mathring{\mathfrak{t}} \cap \mathfrak{h} + \sqrt{-1} (\mathring{\mathfrak{t}} \cap \mathfrak{q}) + \sqrt{-1} (\mathfrak{p} \cap \mathfrak{h}) + \mathfrak{p} \cap \mathfrak{q},$$

$$\mathring{\mathfrak{t}}^{d} = \mathring{\mathfrak{t}} \cap \mathfrak{h} + \sqrt{-1} (\mathfrak{p} \cap \mathfrak{h}), \qquad \mathfrak{h}^{d} = \mathring{\mathfrak{t}} \cap \mathfrak{h} + \sqrt{-1} (\mathring{\mathfrak{t}} \cap \mathfrak{q}).$$

Extend σ and θ to complex linear involutions of g_c . The restrictions of σ and θ to g^d are denoted by the same letters. Then $(g^d, \mathfrak{k}^d, \mathfrak{h}^d, \sigma, \theta)$ satisfies the same condition as $(\mathfrak{g}, \mathfrak{k}, \mathfrak{h}, \theta, \sigma)$.

Let G_c be a connected complex Lie group with Lie algebra \mathfrak{g}_c , and let $G, K, H, G^d, K^d, H^d, H_c$ and K_c be the analytic subgroups of G_c corresponding to $\mathfrak{g}, \mathfrak{k}, \mathfrak{h}, \mathfrak{g}^d, \mathfrak{k}^d, \mathfrak{h}^d, \mathfrak{h}_c$ and \mathfrak{k}_c , respectively. Let \hat{K} (resp. \hat{H}^d)

Received August 10, 1983.