Advanced Studies in Pure Mathematics 4, 1984 Group Representations and Systems of Differential Equations pp. 209–221

Regular Holonomic Systems and their Minimal Extensions I

Masatoshi Noumi

This note, together with J. Sekiguchi [13], is intended to be an introduction to Professor Kashiwara's lectures at RIMS in 1981. At that time, he lectured on three topics as follows:

(i) Gabber's theorem on the involutiveness of the characteristic variety of a coherent \mathcal{D}_x -Module.

(ii) Some fundamental results on regular holonomic systems (holonomic systems with regular singularities).

(iii) An application of regular holonomic systems to the representation theory of a semisimple Lie algebra.

Based on his lectures, we will make here a survey of (i) and (ii) above. As to (iii), the reader is referred to J. Sekiguchi [13].

Throughout this note, X stands for a complex manifold. We denote by T^*X the cotangent bundle of X with canonical projection $\pi: T^*X \rightarrow X$. If Y is a submanifold of X, the conormal bundle of Y in X will be denoted by $T^*_{Y}X$. We also use the notations $\mathring{T}^*X = T^*X \setminus T^*_{X}X$ and $\mathring{\pi} = \pi|_{\mathring{T}^*X}$. As usual, we denote by \mathscr{D}_X the Ring over X of linear differential operators of finite order and by \mathscr{E}_X the Ring over T^*X of microdifferential operators of finite order, respectively. In Section 2 and Section 3, we will freely use the terminology of derived categories. For a Ring \mathscr{A} on X, we denote by $D(\mathscr{A})$ the derived category of the category of (left) \mathscr{A} -Modules.

§ 1. Regular holonomic systems

Let Ω be an open subset of $\hat{T}^*X = T^*X \setminus T^*_X X$ and V a conic involutive closed analytic subset of Ω . Then we define \mathscr{J}_V to be the sub-Module of $\mathscr{E}_x(1)|_{\mathfrak{Q}}$ consisting of all microdifferential operators P whose symbols $\sigma_1(P)$ vanish on V. We denote by $\mathscr{A}_V = \bigcup_{k \ge 1} \mathscr{J}_V^k$ the sub-Algebra of $\mathscr{E}_x|_{\mathfrak{Q}}$ generated by \mathscr{J}_V . Note that \mathscr{J}_V is a bilaterally coherent $\mathscr{E}_x(0)|_{\mathfrak{Q}}$ -Module.

Proposition 1.1. For a coherent $\mathscr{E}_{x}|_{\mathscr{Q}}$ -Module M, the following conditions are equivalent:

Received April 25, 1983.