Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 183-192

A Differentiable Sphere Theorem for Volume-Pinched Manifolds

Takao Yamaguchi

Dedicated to Professor I. Mogi on his 60th birthday

§ 0. Introduction

A main problem in differential geometry is to investigate the influences of geometrical quantities of complete Riemannian manifolds on the topology. The sphere theorem due to Klingenberg states that if M is a complete simply connected manifold with the sectional curvature K_M , 1/4 $\langle K_M \leq 1$, then M is a topological sphere ([7]). A stronger assumption for curvature implies that M is diffeomorphic to the standard sphere ([4], [8], [10]). In the proof of these results, an estimate of the injectivity radius i(M), $i(M) \geq \pi$, of the exponential map on M plays an essential role. On the other hand, by pinching the diameter diam (M) in place of the sectional curvature Grove-Shiohama has obtained the following theorem which generalizes the Klingenberg sphere theorem.

Theorem A ([6]). If the sectional curvature and the diameter of a complete manifold M satisfy $K_M \ge 1$, diam $(M) \ge \pi/2$, then M is a topological sphere.

Recently by pinching the volume Vol(M), Shiohama has proved the following sphere theorem for manifolds M of positive Ricci curvature Ric_M. We denote by S^n the unit *n*-sphere.

Theorem B ([9]). For given $n, -\Lambda^2$, there exists an $\varepsilon = \varepsilon(n, \Lambda)$ such that if a complete manifold M of dimension n satisfies

$$\operatorname{Ric}_{M} \geq 1, K_{M} \geq -\Lambda^{2}, \operatorname{Vol}(M) \geq \operatorname{Vol}(S^{n}) - \varepsilon,$$

then M is a topological sphere.

But in the situation of Theorem A or Theorem B, it was not known for M to be diffeomorphic to the standard sphere. The purpose of this

Received December 14, 1982.

Revised April 1, 1983.