Chapter 7

Pyramidal Traveling Fronts

Pyramidal traveling fronts have been studied by [44, 45, 28] and so on for bistable reaction-diffusion equations in \mathbb{R}^n . See also Hamel and Nadirashvili [23] for pyramidal traveling fronts in the Fisher–KPP equations in \mathbb{R}^n . In this chapter we study traveling fronts of pyramidal shapes to bistable reaction-diffusion equations in \mathbb{R}^n following [44, 45, 28]. Here $n \geq 3$ is a given integer. We study

$$u_t = \Delta u + f(u), \quad \boldsymbol{x} \in \mathbb{R}^n, t > 0,$$

$$u(\boldsymbol{x}, 0) = u_0(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^n.$$
(7.1)

Here u_0 is a given bounded and uniformly continuous function. In this chapter we assume

- (A1) f is of class C^1 in some open interval including [-1,1]. It satisfies f(1) = 0, f(-1) = 0, f'(-1) < 0, and f'(1) < 0;
- (A2) f satisfies $\int_{-1}^{1} f(u) du > 0$;
- (A3) there exist k > 0 and Φ such that one has

$$-\Phi''(x) - k\Phi'(x) - f(\Phi(x)) = 0, \qquad x \in \mathbb{R},$$

$$-\Phi'(x) > 0, \qquad x \in \mathbb{R},$$

$$\Phi(-\infty) = 1, \quad \Phi(+\infty) = -1.$$

7.1 Preliminaries for Pyramidal Traveling Fronts

Let

$$\beta = \frac{1}{2}\min\{-f'(-1), -f'(1)\} > 0.$$

There exists a constant $\delta_* \in (0, 1/4)$ with

$$-f'(s) > \beta$$
 if $|s+1| < 2\delta_*$ or $|s-1| < 2\delta_*$.

There exist constants $K_0 > 0$ and $\kappa_0 > 0$ such that one has

$$\max\{|\Phi'(x)|, |\Phi''(x)|, |x\Phi'(x)|\} \le K_0 \exp(-\kappa_0|x|) \quad \text{for all } x \in \mathbb{R}.$$

Let $c \in (k, \infty)$ be arbitrarily given. Without loss of generality, we assume that a traveling front is moving to the x_n -direction. We write $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{x}' = (x_1, \dots, x_{n-1})$. Now we put $s = x_n - ct$ and $u(\mathbf{x}, t) = w(\mathbf{x}', s, t)$. Denoting $w(\mathbf{x}', s, t)$ simply by $w(\mathbf{x}, t)$, we have

$$w_t - \Delta w - cD_n w - f(w) = 0, \quad \boldsymbol{x} \in \mathbb{R}^n, t > 0,$$

$$w(\boldsymbol{x}, 0) = u_0(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^n.$$
 (7.2)