CHAPTER 6

Boundary control method

1. Brief introduction to the boundary control method

1.1. Wave equation and Gel'fand inverse problem. Let \mathcal{N} be an *n*-dimensional complete connected Riemannian manifold with boundary $\partial \mathcal{N}$. We shall consider an IBVP (initial-boundary value problem) for the wave equation

$$\partial_t^2 u = \Delta_g u \quad \text{on} \quad \mathcal{N} \times (0, \infty),$$

where Δ_g is the Laplace-Beltrami operator. In local coordinates

$$\Delta_g = g^{-1/2} \partial_i (g^{ij} g^{1/2} \partial_j), \quad g = \det (g_{ij})$$

We impose the initial condition

$$u\big|_{t=0} = \partial_t u\big|_{t=0} = 0,$$

and the boundary condition

$$\partial_{\nu} u \Big|_{\partial \mathcal{N} \times (0,\infty)} = f \in C_0^{\infty}(\partial \mathcal{N} \times (0,\infty)).$$

Here ν is the outer unit normal to $\partial \mathcal{N}$. Let $u^f(x,t)$ be the solution to the above IBVP. We measure u^f on $\partial \mathcal{N} \times (0, \infty)$, and call

(1.1)
$$\Lambda^h : f \to u^f \big|_{\partial \mathcal{N} \times (0,\infty)}$$

a hyperbolic Neumann-to-Dirichlet map. The basic question we address is the following one.

Question Assume we know Λ^h . Can we determine (\mathcal{N}, g) , i.e. the manifold \mathcal{N} and the metric g?

This is the *Gel'fand inverse problem* (stated in a slightly different form, [**37**]). Note that Λ^h is an operator defined on $\partial \mathcal{N} \times (0, \infty)$. Starting from the knowledge on $\partial \mathcal{N} \times (0, \infty)$, the first issue is the topology of \mathcal{N} , and the second issue is the Riemannian structure.

The answer to the above question is affirmative when \mathcal{N} is compact, and also for non-compact \mathcal{N} with some additional geometric assumption. To fix the idea, in this chapter, \mathcal{N} means either any compact connected Riemannian manifold with boundary, or when dealing with the non-compact case, the manifold Ω^c discussed in Chap. 5, §4. However, the arguments given below also work for non-compact manifolds possesing the spectral representation as in the case of Ω^c . Note that in both cases $\partial \mathcal{N}$ is compact.