CHAPTER 4

Radon transform and propagation of singularities in \mathbf{H}^n

The purpose of this chapter is to extend Theorem 1.6.6 to the asymptotically hyperbolic metric on \mathbf{R}_{+}^{n} in the sense of singularity expansion.

1. Geodesic coordinates near infinity

1.1. Geodesic coordinates. We shall study the metric

(1.1)
$$ds^{2} = y^{-2} \Big((dx)^{2} + (dy)^{2} + A(x, y, dx, dy) \Big)$$

on \mathbb{R}^n_+ defined in Chapter 2, Subsection 2.1, i.e. the metric satisfying the condition (C) in Chap. 2. Our aim is to transform (1.1) into the following canonical form

(1.2)
$$ds^{2} = y^{-2} \Big((dx)^{2} + (dy)^{2} + B(x, y, dx) \Big)$$

in the region $0 < y < y_0$, y_0 being a sufficiently small constant, where B(x, y, dx) is a symmetric covariant tensor of the form

$$B(x, y, dx) = \sum_{i,j=1}^{n-1} b_{ij}(x, y) dx^{i} dx^{j}.$$

Passing to the variable $z = \log y$, we rewrite the Laplace-Beltrami operator Δ_g associated with (1.1) as

$$\Delta_g = \partial_z^2 + e^{2z} \partial_x^2 + \sum_{i,j=1}^{n-1} a^{ij}(x, e^z) e^{2z} \partial_{x_i} \partial_{x_j}$$
$$+ 2 \sum_{i=1}^{n-1} a^{in}(x, e^z) e^z \partial_{x_i} \partial_z + a^{nn}(x, e^z) \partial_z^2$$

up to 1st order terms. Then (g^{ij}) in the variables x and z takes the form

(1.3)
$$g^{ij} = \begin{cases} e^{2z} \left(\delta^{ij} + h^{ij}(x, z) \right), & 1 \le i, j \le n - 1, \\ e^{z} h^{in}(x, z), & 1 \le i \le n - 1, \\ 1 + h^{nn}(x, z), & i, j = n, \end{cases}$$

where $h^{ij}(x,z)$ satisfies in the region z < 0

$$(1.4) |\partial_x^{\alpha} \partial_z^{\beta} h^{ij}(x,z)| \le C_{\alpha\beta} W(x,z)^{-\min(|\alpha|+\beta,1)-1-\epsilon_0},$$

and

$$W(x,z) = 1 + |z| + \log(|x| + 1).$$