Chapter 2

Probability measure \mathbf{P} on $\mathbb{R}^{\mathbb{B}}$

Topics of this chapter come from Fukuyama [11]. To tell the truth, Chapter 1 was prepared, since we wanted the fact that every almost periodic function always has the mean value. Based on these mean values, we define a probability measure \mathbf{P} on the space $\mathbb{R}^{\mathbb{B}}$ of large volume.

2.1 Definition of the probability measure P

Definition $2.1 \mathbb{B}:=A P(\mathbb{R}) \cap C(\mathbb{R} ; \mathbb{R})$, i.e., \mathbb{B} is the set of all real-valued almost periodic functions.

Definition 2.2 For $T>0$, we define a probability measure P_{T} on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ by

$$
P_{T}(E):=\frac{1}{2 T} \mu([-T, T] \cap E), \quad E \in \mathscr{B}(\mathbb{R})
$$

Here μ is the 1 -dimensional Lebesgue measure.
Lemma 2.1 For $f_{1}, \ldots, f_{n} \in \mathbb{B}$, let $P_{T}^{\left(f_{1}, \ldots, f_{n}\right)}$ be an image measure of P_{T} by the continuous mapping

$$
\mathbb{R} \ni t \mapsto\left(f_{1}, \ldots, f_{n}\right)(t):=\left(f_{1}(t), \ldots, f_{n}(t)\right) \in \mathbb{R}^{n}
$$

$\left(P_{T}^{\left(f_{1}, \ldots, f_{n}\right)}\right.$ is a probability measure on $\left(\mathbb{R}^{n}, \mathfrak{B}\left(\mathbb{R}^{n}\right)\right)$.) Then

$$
\begin{aligned}
& { }^{\exists} P: \text { a probability measure on }\left(\mathbb{R}^{n}, \mathfrak{B}\left(\mathbb{R}^{n}\right)\right) \\
& \text { s.t. } \quad P_{T}^{\left(f_{1}, \ldots, f_{n}\right)} \rightarrow P \text { weakly as } T \rightarrow \infty .
\end{aligned}
$$

Proof. Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$. By Claim 1.3 and Claim 1.1(iii), $e^{\sqrt{-1} \sum_{i=1}^{n} \xi_{i} f_{i}(\cdot)} \in$ $A P(\mathbb{R})$. Thus, by Theorem 1.1,

$$
\begin{aligned}
\overline{P_{T}^{\left(f_{1}, \ldots, f_{n}\right)}}(\xi)^{\dagger 1} & =\int_{\mathbb{R}^{n}} e^{\sqrt{-1}\langle\xi, x\rangle} P_{T}^{\left(f_{1}, \ldots, f_{n}\right)}(d x) \\
& =\int_{\mathbb{R}} e^{\sqrt{-1} \sum_{i=1}^{n} \xi_{i} f_{i}(t)} P_{T}(d t)
\end{aligned}
$$

