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Corollary 1.1 Under the same setting as in Theorem 1.3,
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Chapter 2

Probability measure P on RB

Topics of this chapter come from Fukuyama [11]. To tell the truth, Chapter 1 was pre-
pared, since we wanted the fact that every almost periodic function always has the mean
value. Based on these mean values, we define a probability measure P on the space RB of
large volume.

2.1 Definition of the probability measure P

Definition 2.1 B´ AP.R/\C.RIR/, i.e., B is the set of all real-valued almost periodic
functions.

Definition 2.2 For T > 0, we define a probability measure PT on .R;B.R// by
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Here � is the 1-dimensional Lebesgue measure.
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