Chapter 1

Necessary conditions for well-posedness

1.1 Lax-Mizohata theorem

Let P(x, D) be a differential operator of order m defined in a neighborhood Ω of the origin of \mathbb{R}^{n+1} with coordinates $x = (x_0, x_1, ..., x_n) = (x_0, x')$

(1.1.1)
$$P(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x)D^{\alpha}$$

where $D^{\alpha} = D_0^{\alpha_0} \cdots D_n^{\alpha_n}$, $D_j = -i\partial/\partial x_j$ and $a_{\alpha}(x) \in C^{\infty}(\Omega)$. We assume that hyperplanes $x_0 = \text{const.}$ are non characteristic for P. Thus we may assume $a_{(m,0,\ldots,0)}(x) = 1$.

Definition 1.1.1 We say that the Cauchy problem for P is C^{∞} well posed near the origin if there are $\epsilon > 0$ and a neighborhood ω of the origin such that for any $|\tau| \le \epsilon$ and for any $f(x) \in C_0^{\infty}(\omega)$ vanishing in $x_0 < \tau$ there is a unique solution $u(x) \in H^{\infty}(\omega)$ to Pu = f in ω vanishing in $x_0 < \tau$, where $H^{\infty}(\omega) = \bigcap_{p=0}^{\infty} H^p(\omega)$ and $H^p(\omega)$ denotes the usual Sobolev space of order p.

Assume that $u \in H^{\infty}(\omega)$ vanishes in $x_0 < \tau$ with $|\tau| < \epsilon$. If Pu = 0 in $x_0 < t$ ($|t| < \epsilon$) then we conclude that u = 0 in $x_0 < t$. To see this, take $\chi \in C_0^{\infty}(\omega)$ and note that the equation $Pw = P(\chi u)$ has a solution $w \in H^{\infty}(\omega)$ vanishing in $x_0 < t$. Since $w - \chi u = 0$ in $x_0 < \min\{\tau, t\}$, and $P(w - \chi u) = 0$, by the uniqueness we get $w = \chi u$ and hence u = 0 in $x_0 < t$. Since $\chi \in C_0^{\infty}(\omega)$ is arbitrary we conclude u = 0 in $x_0 < t$.

Lemma 1.1.1 Assume that the Cauchy problem for P is C^{∞} well posed near the origin. Then the following classical Cauchy problem has a unique solution $u \in H^{\infty}(\omega)$

(1.1.2)
$$\begin{cases} Pu = f & in \quad \omega \cap \{x_0 > \tau\} \\ D_0^j u(\tau, x') = u_j(x'), \quad j = 0, 1, ..., m - 1 \end{cases}$$