Part 2. Non-abelian classfields attached to subgroups of $\Gamma = PSL_2(\mathbb{Z}^{(p)})$ with finite indices.

Put $\Gamma = PSL_2(\mathbb{Z}^{(p)})$ and $\Gamma^* = \{x \in GL_2(\mathbb{Z}^{(p)}) | \det x \in \Pi\} / \pm \Pi$, where $\mathbb{Z}^{(p)} = \Pi \cdot \mathbb{Z}$ and $\Pi = p^{\mathbb{Z}}$ (the infinite cyclic group generated by p), so that $\Gamma^* \supset \Gamma$, $(\Gamma^* : \Gamma) = 2$. Our main purpose in Part 2 of this chapter is to show that the group Γ^* (resp. Γ , or other related groups) describes a certain "non-abelian classfield theory" over the rational function field $K^* = \mathbb{F}_p(\overline{j})$ (resp. $\mathbb{F}_{p^2}(\overline{j})$, or other related algebraic function fields). Namely, for each normal subgroup Γ' of (say) Γ^* with finite index, a finite Galois extension K' of K^* called the Γ' -classfield is defined, and the following main theorems are proved:

- (i) for each Γ' , the Γ' -classfield exists and is unique;
- (ii) there is a certain isomorphism $\iota_{\Gamma'} : G(K'/K^*) \cong \Gamma^*/\Gamma'$;
- (iii) the law of decomposition of prime divisors of K^* in K' is completely described by the primitive elliptic conjugacy classes of Γ^* (and the isomorphism $\iota_{\Gamma'}$).

More precisely, let $\wp(\Gamma^*)$, $\wp(K^*)$ and the bijection $\mathcal{J}^* : \wp(\Gamma^*) \to \wp(K^*)$ be as in §10 (Part 1), \mathcal{J}^* being defined with respect to a fixed prime factor \mathfrak{p} of p in \mathbb{Q}^a (the algebraic closure of \mathbb{Q} in \mathbb{C}). Then a finite Galois extension K' over K is called a Γ' -classfield if the following condition (\sharp) (§29) is satisfied:

(#) An ordinary prime divisor P⁰ of K^{*} (i.e., those P⁰ contained in ℘(K^{*})) is decomposed completely ⁵ in K' if and only if Γ^{*}_z is contained in Γ'; where z(∈ S) is a representative of the Γ^{*}-equivalence class J^{*-1}(P⁰), and Γ^{*}_z denotes its stabilizer in Γ^{*}.

With this definition, we have the following main theorems (§30):

MAIN THEOREM (Γ^* -1). For each Γ' , Γ' -classfield exists and is unique.

MAIN THEOREM (Γ^* -2). Let \Re be the composite of all Γ' -classfields, where Γ' runs over all normal subgroups of Γ^* with finite indices. Then there is a dense injection $\iota : \Gamma^* \to G(\Re/K^*)$ satisfying the following conditions:

- (i) ι induces an isomorphism of the completion of Γ* with respect to "subgroups with finite indices topology" and G(R/K*); hence subgroups of Γ* with finite indices and finite extensions of K* contained in R correspond in a one-to-one manner. Moreover, if Γ' is any normal subgroup of Γ* with finite index, then the corresponding finite extension of K* is nothing but the Γ'-classfield.
- (ii) Let \$\mathbb{P}^0\$ be any ordinary prime divisor of K*, let z be a representative of \$\mathcal{J}^{*-1}(\mathbb{P}^0)\$, and let \$\Gamma_z^*\$ be the stabilizer of z in \$\Gamma^*\$. Let \$E_z^*\$ be the torsion subgroup of \$\Gamma_z^*\$, and let \$\gamma\$ be a positive generator of \$\Gamma_z^*\$ mod \$E_z^*\$ with respect to \$\mathbf{p}\$ (see \$23). Then \$\mathbb{P}^0\$ has an extension \$\mathbb{P}_z\$ to \$\mathcal{R}\$ whose inertia group is \$\lambda(E_z^*)\$ and whose Frobenius substitution is \$\lambda(\begin{pmatrix} E_z^* \nod \$\mathcal{L}_z^* \nod \$\mathcal{L}_z^*\$ and whose \$\mathcal{L}_z^*\$ in \$\mathcal{L}_z^*\$.

⁵i.e., the relative degree is one.