Part 2. Full G_p -subfields over algebraic number fields.

The readers are suggested to recall the definitions of full G_p -subfield (§4) and quasiirreducibility (§16) of a G_p -field over C. Throughout the following, an algebraic number field always means a *finite* algebraic extension of the field of rational numbers Q.

Main results.

§18. Our main purpose in Part 2 of this chapter is to prove the following two theorems, Theorem 4 and Theorem 5. Later, we shall give some supplementary results (see $\$32 \sim \36).

THEOREM 4. Every G_p -field over \mathbb{C} contains a full G_p -subfield over an algebraic number field.

If we impose quasi-irreducibility condition on a G_p -field over C, then we get an essentially stronger result, as follows.

THEOREM 5. Every quasi-irreducible G_p -field L over \mathbb{C} contains a unique full G_p -subfield L_{k_0} over an algebraic number field k_0 satisfying the following properties; namely, if k is any subfield of \mathbb{C} , then there is a full G_p -subfield L_k over k if and only if k contains k_0 , and moreover if k is such a field, then L_k is unique and is given by $L_k = L_{k_0} \cdot k$.

In short, every quasi-irreducible G_p -field over **C** contains a smallest full G_p -subfield over an algebraic number field, and all other full G_p -subfields are its constant field extensions. This will be referred to as the existence and essential uniqueness of a full G_p subfield over an algebraic number field of a quasi-irreducible G_p -field over **C**. Some variations of Theorem 5 will be given in §32, §33.

Although Theorem 5 is essentially stronger (and hence more noteworthy) than Theorem 4, it is almost a formal consequence of Theorem 4. Thus, our first task is to show this.

Reducing Theorem 5 to Theorem 4.

§19. In general, if $L \supset K_1, K_2$ are overfields of a field k such that $L = K_1K_2$ and that K_1, K_2 are linearly disjoint over k, and if σ_1, σ_2 are automorphisms of K_1, K_2 respectively such that $\sigma_1 | k = \sigma_2 | k$, then there is a unique automorphism of L whose restrictions to K_1, K_2 coincide with σ_1, σ_2 respectively. This automorphism of L will be denoted by $\sigma_1 \otimes \sigma_2$. The identity automorphism of a field K will be denoted by 1_K .