Part 2. Full $G_{\mathfrak{p}}$ -subfields over algebraic number fields.

The readers are suggested to recall the definitions of full $G_{\mathfrak{p}}$ -subfield ($\S 4$) and quasiirreducibility ($\S 16$) of a $G_{\mathfrak{p}}$ -field over C. Throughout the following, an algebraic number field always means a finite algebraic extension of the field of rational numbers Q .

Main results.

 $$18.$ Our main purpose in Part 2 of this chapter is to prove the following two theorems, Theorem 4 and Theorem 5. Later, we shall give some supplementary results (see $\$ 32 \sim \$ 36$).

THEOREM 4. Every $G_{\mathfrak{p}}$ -field over \mathbb{C} contains a full $G_{\mathfrak{p}}$ -subfield over an algebraic number field.

If we impose quasi-irreducibility condition on a $G_{\mathfrak{p}}$ -field over C, then we get an essentially stronger result, as follows.

THEOREM 5. Every quasi-irreducible $G_{\mathfrak{v}}$ -field L over $\mathbf C$ contains a unique full $G_{\mathfrak{v}}$ subfield $L_{k_{0}}$ over an algebraic number field k_{0} satisfying the following properties; namely, if k is any subfield of ${\bf C}$, then there is a full $G_{\mathfrak{p}}$ -subfield L_{k} over k if and only if k contains k_{0} , and moreover if k is such a field, then L_{k} is unique and is given by $L_{k}=L_{k_{0}}\cdot k.$

In short, every quasi-irreducible $G_{\mathfrak{p}}$ -field over C contains a smallest full $G_{\mathfrak{p}}$ -subfield over an algebraic number field, and all other full $G_{\mathfrak{p}}$ -subfields are its constant field extensions. This will be referred to as the existence and essential uniqueness of a full $G_{\mathfrak{p}}$ subfield over an algebraic number field of a quasi-irreducible $G_{\mathfrak{p}}$ -field over C. Some variations of Theorem 5 will be given in $\S 32$, $\S 33$.

Although Theorem 5 is essentially stronger (and hence more noteworthy) than Theorem 4, it is almost a formal consequence of Theorem 4. Thus, our first task is to show this.

Reducing Theorem 5 to Theorem 4.

§ 19. In general, if $L\supset K_{1}, K_{2}$ are overfields of a field k such that $L=K_{1}K_{2}$ and that K_{1}, K_{2} are linearly disjoint over k, and if σ_{1}, σ_{2} are automorphisms of K_{1}, K_{2} respectively such that $\sigma_{1}|k| = \sigma_{2}|k$, then there is a unique automorphism of L whose restrictions to K_{1},K_{2} coincide with σ_{1},σ_{2} respectively. This automorphism of L will be denoted by $\sigma_{1}\otimes\sigma_{2}$. The identity automorphism of a field K will be denoted by 1_{K} .