Part 1. The G_p -fields over **C**.

The G_p -fields.

§1. Let L be a discrete field, on which the group $G_p = PSL_2(k_p)$ acts effectively and continuously as a group of field-automorphisms; namely, each $g_p \in G_p$ gives a field automorphism $x \mapsto g_p(x)$ of L, and the induced map $G_p \to \operatorname{Aut} L$ is an injective homomorphism;

(1)
$$(g_{\mathfrak{p}}h_{\mathfrak{p}})(x) = g_{\mathfrak{p}}(h_{\mathfrak{p}}(x)) \quad \forall g_{\mathfrak{p}}, h_{\mathfrak{p}} \in G_{\mathfrak{p}}, x \in L; \\ g_{\mathfrak{p}}(x) = x \quad (\forall x \in L) \leftrightarrow g_{\mathfrak{p}} = 1.$$

Since L is a discrete field, the continuity of the actions of G_p amounts to saying that, for each $x \in L$, its stabilizer in G_p is open. For each open compact subgroup V of G_p , put

(2)
$$L_V = \{x \in L \mid v(x) = x, \forall v \in V\}.$$

Since open compact subgroups form a basis of neighborhoods of the identity of G_p , we get $L = \bigcup_V L_V$. Moreover, it follows that for each V, L/L_V is separably algebraic, V is the group of all automorphisms of L/L_V , and the topology of V induced by that of G_p coincides with the Krull topology of $V = \operatorname{Aut}(L/L_V)$. In fact, let $x \in L$, and let V' be its stabilizer in G_p . Then since V' is open, we have $(V : V' \cap V) < \infty$. Put $V = \sum_{i=1}^d \sigma_i (V \cap V')$. Then $\sigma_1(x), \dots, \sigma_d(x)$ are mutually distinct, and their elementary symmetric functions are all contained in L_V ; hence L/L_V is separably algebraic. Now consider $\operatorname{Aut}(L/L_V)$ as equipped with the Krull topology. Then the injection $\varphi : V \to \operatorname{Aut}(L/L_V)$ is continuous, since the action of G_p on L is so; hence $\varphi(V)$ is also compact. On the other hand, $\varphi(V)$ is dense in $\operatorname{Aut}(L/L_V)$, since for any $\sigma \in \operatorname{Aut}(L/L_V)$, we have $\sigma(x) = \sigma_i(x)$ for some i (σ_i being as above, for this x). Therefore, $\varphi(V) = \operatorname{Aut}(L/L_V)$, and φ is bicontinuous (since V is compact).

Let k be the fixed field of G_{p} ;

(3)
$$k = \{x \in L \mid g_{\mathfrak{p}}(x) = x \; \forall g_{\mathfrak{p}} \in G_{\mathfrak{p}}\}.$$

We shall call L a one-dimensional G_p -field over k, or simply, a G_p -field over k, if

$$(L1) \dim_k L = 1,$$

and if for every open compact subgroup V of G_p , the condition:

(L2) L_V is finitely generated over k, and almost all prime divisors of L_V over k are unramified in L;

is satisfied. We note that since L/L_V is algebraic, (L1) implies $\dim_k L_V = 1$; hence L_V is an algebraic function field of one variable over k, in the sense that L_V/k is finitely generated and is of dimension one. By a prime divisor of L_V over k, we mean an equivalence class