$\label{eq:2.1} \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A})$

Part 1. The $G_{\mathfrak{p}}$ -fields over C.

The $G_{\mathbf{p}}$ -fields.

§1. Let L be a discrete field, on which the group $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ acts effectively and continuously as a group of field-automorphisms; namely, each $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ gives a field automorphism $x \mapsto g_{\mathfrak{p}}(x)$ of L, and the induced map $G_{\mathfrak{p}}\rightarrow \text{Aut } L$ is an injective homomorphism;

(1)
$$
(g_{\mathfrak{p}}h_{\mathfrak{p}})(x) = g_{\mathfrak{p}}(h_{\mathfrak{p}}(x)) \quad \forall g_{\mathfrak{p}}, h_{\mathfrak{p}} \in G_{\mathfrak{p}}, x \in L;
$$

$$
g_{\mathfrak{p}}(x) = x \quad (\forall x \in L) \leftrightarrow g_{\mathfrak{p}} = 1.
$$

Since L is a discrete field, the continuity of the actions of $G_{\mathfrak{p}}$ amounts to saying that, for each $x \in L$, its stabilizer in $G_{\mathfrak{p}}$ is open. For each open compact subgroup V of $G_{\mathfrak{p}}$, put

(2)
$$
L_V = \{x \in L \mid v(x) = x, \ \forall v \in V\}.
$$

Since open compact subgroups form a basis of neighborhoods of the identity of $G_{\mathfrak{p}}$, we get $L=\bigcup_{V}L_{V}$. Moreover, it follows that for each V, L/L_{V} is separably algebraic, V is the group of all automorphisms of L/L_{V} , and the topology of V induced by that of $G_{\mathfrak{p}}$ coincides with the Krull topology of $V = Aut(L/L_{V})$. In fact, let $x \in L$, and let V' be its stabilizer in $G_{\mathfrak{p}}$. Then since V' is open, we have $(V: V' \cap V) < \infty$. Put $V = \sum_{i=1}^{d} \sigma_{i}(V \cap V')$. Then $\sigma_{1}(x), \cdots, \sigma_{d}(x)$ are mutually distinct, and their elementary symmetric functions are all contained in L_{V} ; hence L/L_{V} is separably algebraic. Now consider $Aut(L/L_{V})$ as equipped with the Krull topology. Then the injection $\varphi : V \rightarrow \text{Aut}(L/L_{V})$ is continuous, since the action of $G_{\mathfrak{p}}$ on L is so; hence $\varphi(V)$ is also compact. On the other hand, $\varphi(V)$ is dense in Aut(L/L_{V}), since for any $\sigma\in \text{Aut}(L/L_{V})$, we have $\sigma(x)=\sigma_{i}(x)$ for some $i(\sigma_{i})$ being as above, for this x). Therefore, $\varphi(V)=\text{Aut}(L/L_{V})$, and φ is bicontinuous (since V is compact).

Let k be the fixed field of $G_{\mathbf{p}}$;

$$
(3) \hspace{1cm} k = \{x \in L \mid g_{\mathfrak{p}}(x) = x \; \forall g_{\mathfrak{p}} \in G_{\mathfrak{p}}\}.
$$

We shall call L a one-dimensional $G_{\mathfrak{p}}$ -field over k, or simply, a $G_{\mathfrak{p}}$ -field over k, if

$$
(L1) \dim_k L = 1,
$$

and if for every open compact subgroup V of $G_{\mathfrak{p}}$, the condition:

(L2) L_{V} is finitely generated over k, and almost all prime divisors of L_{V} over k are unramified in L ;

is satisfied. We note that since L/L_{V} is algebraic, (L1) implies $\dim_{k}L_{V}=1$; hence L_{V} is an algebraic function field of one variable over k, in the sense that L_{V}/k is finitely generated and is of dimension one. By a prime divisor of L_{V} over k, we mean an equivalence class