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5. Hyperbolic geometry.

Here we give a brief outline of some of the main features of
hyperbolic geometry. Again, this will serve mainly as a source of
examples and motivation, and we will not give detailed proofs. One-
dimensional hyperbolic space is just the real line, so we begin in
dimension 2. The main ideas generalise to higher dimensions.

5.1. The hyperbolic plane.

We describe the “Poincar\’e model” for the hyperbolic plane. For
this it is convenient to use complex coordinates. Let $D=\{z\in C|$

$|z|<1\}$ . Suppose $\alpha$ : $I\rightarrow D$ is a smooth path. We write $\alpha’(t)\in C$

for the complex derivative at $t$ . Thus, $|\alpha’(t)|$ is the $u_{Speed’}$ at time
$t$ . The euclidean length of $\alpha$ is thus given by the formula $l_{E}(\alpha)=$

$\int_{I}|\alpha’(t)|dt$ . This is cqual to the “rectifiable” length $a_{\llcorner S}$ defincd in
Section 3.

We now modify this by the introduction a scaling factor, $\lambda$ :
$D\rightarrow(0, \infty)$ . The appropriate formula is: $\lambda(z)=2/(1-|z|^{2})$ . The
hyperbolic length of $\alpha$ is thus given by $l_{H}(\alpha)=\int_{I}\lambda(\alpha(t))|\alpha’(t)|dt.$

Note that as $z$ approaches $\partial D$ in the euclidean sense, then $\lambda(z)$

$\rightarrow\infty$ . Thus close to $\partial D$ , things big in hyperbolic space may look
very small to us in euclidean space. Indeed, since $\int_{0}^{\infty}\frac{2}{1-x^{2}}dx=\infty,$

one needs to travel an infinite hyperbolic distance to approach $\partial D.$

For this reason, $\partial D$ is often referred to as the ideal boundary - we
never actually get there.

Given $x,$ $y\in D$ , write $\rho(x, y)=\inf\{l_{H}(\alpha)\}$ as $\alpha$ varies over all
smooth paths from $x$ to $y$ . In fact, the minimum is attained – there
is always a smooth geodesic from $x$ to $y$ . The remark about the ideal
boundary in the previous paragraph boils down to saying that this
metric is complete. Moreover, if we want to get between two points
$x$ and $y$ as quickly as possible, it would seem a good idea to move a
little towards the centre of the disc, in the euclidean sense. Thus we
would expect hyperbolic geodesics approach the middle of the disc
relative to their euclidean counterparts.

For a more precise analysis, we need the notion of a Mobius

transformation. This is a map $f$ : $C\cup\{\infty\}\rightarrow C\cup\{\infty\}$ of the
form $f(z)=\frac{az+b}{cz+d}$ for $\infty nstantsa,$ $b,$ $c,$ $d\in C$ with $ad-bc\neq 0$ . We
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