CHAPTER IV

Divisors on bundles

We calculate σ -decompositions of pseudo-effective divisors defined over varieties given by toric construction or defined over varieties admitting projective bundle structure. In $\S1$, we recall some basics on toric varieties, extracting from the book [110], and we prove the existence of Zariski-decomposition for pseudo-effective \mathbb{R} divisors on toric varieties. The notion of toric bundles is introduced in $\S 2$: a toric bundle is a fiber bundle of a toric variety whose transition group is the open torus. We give a counterexample to the Zariski-decomposition conjecture by constructing a divisor on such a toric bundle. We also consider projective bundles over curves in $\S 3$. We prove the existence of Zariski-decomposition for pseudo-effective \mathbb{R} -divisors on the bundles. The content of the preprint [106] is written in §4, where we study the relation between the stability of a vector bundle $\mathcal E$ and the pseudo-effectivity of the normalized tautological divisor $\Lambda_{\mathcal{E}}$. For example, the vector bundles with $\Lambda_{\mathcal{E}}$ being nef are characterized by semi-stability, Bogomolov's inequality, and projectively flat metrics. We shall classify and list the A-semi-stable vector bundles of rank two for an ample divisor A such that $\Lambda_{\mathcal{E}}$ is not nef but pseudo-effective. In particular, we can show that $\Lambda_{\mathcal{E}}$ for the tangent bundle \mathcal{E} of any K3 surface is not pseudo-effective.

§1. Toric varieties

§1.a. Fans. We begin with recalling the notion of toric varieties. Let N be a free abelian group of finite rank and let M be the dual $N^{\vee} = \operatorname{Hom}(N, \mathbb{Z})$. We denote the natural pairing $M \times N \to \mathbb{Z}$ by $\langle \ , \ \rangle$. For subsets S and S' of $N_{\mathbb{R}} = N \otimes \mathbb{R}$ and for a subset $R \subset \mathbb{R}$, we set

$$\mathcal{S} + \mathcal{S}' = \{n + n' \mid n \in \mathcal{S}, n' \in \mathcal{S}'\}, \quad R\mathcal{S} = \{rn \mid n \in \mathcal{S}, r \in R\},$$
$$\mathcal{S}^{\vee} = \{m \in \mathsf{M}_{\mathbb{R}} \mid \langle m, n \rangle \ge 0 \text{ for } n \in \mathcal{S}\}, \quad \mathcal{S}^{\perp} = \{m \in \mathsf{M}_{\mathbb{R}} \mid \langle m, n \rangle = 0 \text{ for } n \in \mathcal{S}\}.$$

A subset $\sigma \subset N_{\mathbb{R}}$ is called a *convex cone* if $\mathbb{R}_{\geq 0}\sigma = \sigma$ and $\sigma + \sigma = \sigma$. If $\sigma = \sum_{x \in S} \mathbb{R}_{\geq 0} x$ for a subset $S \subset N_{\mathbb{R}}$, then we say that S generates the convex cone σ . The set σ^{\vee} for a convex cone σ is a closed convex cone of $M_{\mathbb{R}} = M \otimes \mathbb{R}$, which is called the *dual cone* of σ . It is well-known that $\sigma = (\sigma^{\vee})^{\vee}$ for a closed convex cone σ . The dimension of a convex cone σ is defined as that of the vector subspace $N_{\mathbb{R},\sigma} = \sigma + (-\sigma)$. The quotient vector space $N_{\mathbb{R}}(\sigma) = N_{\mathbb{R}}/N_{\mathbb{R},\sigma}$ is dual to the vector space σ^{\perp} . The vector subspace $(\sigma^{\vee})^{\perp} \subset N_{\mathbb{R}}$ is the maximum vector subspace contained in σ . If $(\sigma^{\vee})^{\perp} = 0$, then σ is called *strictly convex*. A face

113