CHAPTER III

Zariski-decomposition Problem

We introduce the notion of σ -decomposition in §1 and that of ν -decomposition in §3 for pseudo-effective \mathbb{R} -divisors on non-singular projective varieties. We consider the Zariski-decomposition problem for pseudo-effective \mathbb{R} -divisors by studying properties on σ - and ν -decompositions. The invariant σ along subvarieties is studied in §2. In §4, we extend the study of these decompositions to the case of relatively pseudo-effective \mathbb{R} -divisors on varieties projective over a fixed base space. In §5, we consider the pullback of pseudo-effective \mathbb{R} -divisors by a projective surjective morphism and compare the σ -decomposition of the pullback with the original σ decomposition.

§1. σ -decomposition

§1.a. Invariants σ_{Γ} and τ_{Γ} . Let X be a non-singular projective variety of dimension n and let B be a big \mathbb{R} -divisor of X. The linear system |B| is the set of effective \mathbb{R} -divisors linearly equivalent to B. Similarly, we define $|B|_{\mathbb{Q}}$ and $|B|_{\text{num}}$ to be the sets of effective \mathbb{R} -divisors Δ satisfying $\Delta \sim_{\mathbb{Q}} B$ and $\Delta \approx B$, respectively. By definition, we may write $|B| = |_B_{\bot}| + \langle B \rangle$ and

$$|B|_{\mathbb{Q}} = \bigcup_{m \in \mathbb{N}} \frac{1}{m} |mB|.$$

There is a positive integer m_0 such that $|mB| \neq \emptyset$ for $m \ge m_0$, by **II.3.17**.

1.1. Definition For a prime divisor Γ , we define:

$$\sigma_{\Gamma}(B)_{\mathbb{Z}} := \begin{cases} \inf\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B| \}, & \text{if } |B| \neq \emptyset, \\ +\infty, & \text{if } |B| = \emptyset; \end{cases}$$
$$\sigma_{\Gamma}(B)_{\mathbb{Q}} := \inf\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B|_{\mathbb{Q}} \}; \\\sigma_{\Gamma}(B) := \inf\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B|_{\operatorname{num}} \}. \end{cases}$$

Then these three functions $\sigma_{\Gamma}(\cdot)_*$ (* = \mathbb{Z} , \mathbb{Q} , and \emptyset) satisfy the triangle inequality:

$$\sigma_{\Gamma}(B_1 + B_2)_* \le \sigma_{\Gamma}(B_1)_* + \sigma_{\Gamma}(B_2)_*.$$

-	n
1	Э