APPENDIX C

p-adic symmetric domains and Totaro's theorem

By TSUZUKI Nobuo

This appendix is a short exposition of M. Rapoport and T. Zink's construction of p-adic symmetric domains [**RZ96**] and of B. Totaro's theorem [**Tot96**]. Let G be a connected reductive algebraic group over \mathbb{Q}_p . The set \mathcal{F} of filtrations on an F-isocrystal with G-structure has a structure of a homogeneous space. Rapoport and Zink introduced a p-adic rigid analytic structure on the set \mathcal{F}^{wa} of weakly admissible points in \mathcal{F} . They conjectured that the point in \mathcal{F}^{wa} is characterized by the semistability in the sense of the geometric invariant theory [**MFK94**] and Totaro proved this conjecture.

1. Weakly admissible filtered isocrystals.

We recall J.-M. Fontaine's definition of weakly admissible filtered F-isocrystals [Fon79].

- **1.1.** Let p be a prime number, k a perfect field of characteristic p, K_0 an absolutely unramified discrete valuation field of mixed characteristics (0, p) with residue field k, \overline{K}_0 an algebraic closure of K_0 , and σ the Frobenius automorphism on K_0 .
- **Definition 1.2.** (1) An F-isocrystal over k, (we simply say "isocrystal"), is a finite dimensional K_0 -vector space V with a bijective σ -linear endomorphism $\Phi: V \to V$. We denote the category of isocrystals over k by $\operatorname{Isoc}(K_0)$.
- (2) For a totally ramified finite extension K of K_0 in \overline{K}_0 , a filtered isocrystal (V, Φ, F^*) over K is an isocrystal (V, Φ) with a decreasing filtration F^* on the K-vector space $V \otimes_{K_0} K$ such that $F^r = V \otimes_{K_0} K$ for $r \ll 0$ and $F^s = 0$ for $s \gg 0$. We denote the category of filtered isocrystals over K by MF(K).

Fontaine also introduced a filtered isocrystal with nilpotent operator N [Fon94]. In this appendix we restrict our attension to filtered isocrystals with N=0.

The category MF(K) is a \mathbb{Q}_p -linear additive category with \otimes and internal Hom's, but not abelian. A subobject (V', Φ', F') of a filtered isocrystal