CHAPTER 11

Appendix

11.1. Existence of complements

PROPOSITION 11.1.1 ([Sh3]). Let $f: X \to Z \ni o$ be a contraction from a surface and D a boundary on X such that $K_X + D$ is C and C is C and C

- (i) the linear system $|-m(K_X+D)|$ is base point free for some $m \in \mathbb{N}$;
- (ii) $K_X + D$ is n-complementary near $f^{-1}(o)$ for some $n \in \mathbb{N}$;
- (iii) the Mori cone $\overline{NE}(X/Z)$ is polyhedral and generated by irreducible curves.

We hope that this fact has higher dimensional generalizations (cf. [K3], see also M. Reid's Appendix to [Sh2]).

PROOF. First we prove (i). We consider only the case of compact X. In the case dim $Z \geq 1$ there are stronger results (see Theorem 6.0.6). Applying a log terminal modification 3.1.1, we may assume that $K_X + D$ is dlt (and X is smooth). Set $C := \lfloor D \rfloor$, $B := \{D\}$. Note that C is connected by Connectedness Lemma. Take sufficiently large and divisible $n \in \mathbb{N}$ and consider the exact sequence

$$0 \longrightarrow \mathcal{O}_X(-n(K_X+D)-C) \longrightarrow \mathcal{O}_X(-n(K_X+D))$$
$$\longrightarrow \mathcal{O}_C(-n(K_X+D)) \longrightarrow 0.$$

By Kawamata-Viehweg Vanishing [KMM, 1-2-6],

$$H^{1}(X, \mathcal{O}_{X}(-n(K_{X}+D)-C)) =$$

$$H^{1}(X, \mathcal{O}_{X}(K_{X}+B-(n+1)(K_{X}+D))) = 0.$$

Therefore $C \cap Bs|-n(K_X+D)| = Bs|-n(K_X+D)|_C|$.

We claim that $\operatorname{Bs} | -n(K_X + D)|_C | = \varnothing$. Indeed, if C is not a tree of rational curves, then $p_a(C) = 1$ and C is either a smooth elliptic curve or a wheel of smooth rational curves (see Lemma 6.1.7). Moreover, $\operatorname{Supp} B \cap C = \varnothing$. But then $(K_X + D)|_C = (K_X + C)|_C = K_C = 0$ and $\operatorname{Bs} | -n(K_X + D)|_C | = \varnothing$ in this case. Note also that here we have an 1-complement by Lemma 8.3.8. Assume now that C is a tree of smooth rational curves. Then $|-n(K_X + D)|_{C_i}|$ is base point free on each component $C_i \subset C$ whenever $-n(K_X + D)|_C|$. This proves our claim.

Thus we have shown that $C \cap Bs|-n(K_X+D)| = \emptyset$. Let $L \in |-n(K_X+D)|$ be a general member. Then $K_X+D+\frac{1}{n}L$ is dlt near C (see 1.3.2). By Connectedness