## CHAPTER 10

## On classification of exceptional complements: case $\delta \geq 1$

Now we study the case  $\delta \geq 1$  in details.

## 10.1. The inequiity $\delta \leq 2$

In this section we show that  $\delta \leq 2$ . Replace (X, B) with a model  $(\tilde{X}, \tilde{B})$ . By construction,  $\delta(X, B) = \delta(\tilde{X}, \tilde{B})$ . Thus we assume that  $\rho(X) = 1$ ,  $B \in \Phi_m$ ,  $K_X + B$  is (1/7)-lt and  $-(K_X + B)$  is nef. Moreover, there exists a boundary Ddefined by (9.1) such that  $K_X + D$  is ample and lc. Let  $C := \lfloor D \rfloor$ . Then  $\delta(X, B)$  is the number of components of C. Since  $K_X + D$  is lc, C has only nodal singularities. The following is a very important ingredient in the classification.

THEOREM 10.1.1 ([Sh3]). Notation as in 10. Then  $p_a(C) \leq 1$ .

SKETCH OF PROOF. Assume that  $p_a(C) \ge 2$ . Consider the following birational modifications:



where  $\mu: X^{\min} \to X$  be a minimal resolution and  $\varphi: X^{\min} \to X'$  is a composition of contractions of -1-curves. Since  $K_X + C$  is lc, C has only nodal singularities. By Lemma 9.1.8, X is smooth at SingC. Therefore  $C^{\min} \simeq C$ . Thus  $p_a(C) = p_a(C^{\min}) \ge 2$ ,  $C^{\min}$  is not contracted and  $p_a(C') \ge 2$ . Take the crepant pull back

$$\mu^*(K_X+B)=K_{X^{\min}}+B^{\min}, \quad ext{with} \quad \mu_*B^{\min}=B$$

and put

 $B' := \varphi_* B^{\min}.$ 

Note that both  $-(K_{X^{\min}} + B^{\min})$  and  $-(K_{X'} + B')$  are nef and big. Since  $\rho(X) = 1$  and  $C \simeq C^{\min}$ , we have

(\*) every two irreducible components of  $C^{\min}$  intersect each other.

If  $X' \simeq \mathbb{P}^2$ , then  $-(K_{X'} + \frac{6}{7}C')$  is ample. This gives  $\frac{6}{7} \deg C' < 3$ ,  $\deg C' \leq 3$ and  $p_a(C') \leq 1$ . Now we assume that  $X' \simeq \mathbb{F}_n$ . We claim that  $n \geq 2$ . Indeed, otherwise  $X' \simeq \mathbb{P}^1 \times \mathbb{P}^1$ ,  $X' \neq X^{\min}$  (because  $\rho(X) = 1$ ) and we have at least