CHAPTER 1

Preliminary results

1.1. Singularities of pairs

List of notations.	
≡	numerical equivalence
~	linear equivalence
\sim_{\circ}	\mathbb{Q} -linear equivalence
$\mathcal{K}(X)$	function field of X
$D \approx D'$	D and D' gives the same valuation of $\mathcal{K}(X)$
$\rho(X)$	Picard number of X , rank of the Néron-Severi group
$Z_1(X/Z)$	group of 1-cycles on X over Z (see $[\mathbf{KMM}]$)
$N_1(X/Z)$	quotient of $Z_1(X/Z)$ modulo numerical equivalence (cf.)
$\overline{NE}(X/Z)$	Mori cone (see [KMM])
$\operatorname{Weil}(X)$	group of Weil divisors, i.e., the free abelian group
	generated by prime divisors on X
$Weil_{lin}(X)$	quotients of $Weil(X)$ modulo linear and algebraic
$\operatorname{Weil}_{\operatorname{alg}}(X)$	equivalence respectively.

All varieties are assumed to be algebraic varieties defined over the field \mathbb{C} . By a *contraction* we mean a projective morphism $f: X \to Z$ of normal varieties such that $f_*\mathcal{O}_X = \mathcal{O}_Z$ (i.e., having connected fibers). We call a birational contraction a *blowdown* or *blowup*, depending on our choice of initial variety.

A boundary on a variety X is a Q-Weil divisor $D = \sum d_i D_i$ with coefficients $0 \le d_i \le 1$. If we have only $d_i \le 1$, we say that D is a subboundary. All varieties are usually considered supplied with boundary (or subboundary) as an additional structure. If D is a boundary, then we say that (X, D) is a log variety or log pair. Moreover, if we have a contraction $f: X \to Z$, then we say that (X, D) is a log variety or log pair. Moreover, if we have a contraction $f: X \to Z$, then we say that (X, D) is a log variety over Z and denote it simply by (X/Z, D). If dim Z > 0, we often consider Z as a germ near some point $o \in Z$. To specify this we denote the corresponding log variety by $(X/Z \ni o, D)$.

Given a birational morphism $f: X \to Y$, the boundary D_Y on Y is usually considered as the image of the boundary D_X on $X: D_Y = f_*D_X$. The integral part of a Q-divisor $D = \sum d_i D_i$ is defined in the usual way: $[D] := \sum [d_i] D_i$, where $[d_i]$ is the greatest integer such that $[d_i] \leq d_i$. The (round up) upper integral part [D] and the fractional part $\{D\}$ are similarly defined.