10 Fundamental solutions

10.1 Cauchy problem for homogeneous wave equation

Our purpose in this section is to construct a solution of the problem

$$\Box E=0, \ (10.1.1) \qquad E(0,x)=0 \;,\; \partial_t E(0,x)=\delta(x),$$

where

$$\Box = -\partial_t^2 + \Delta.$$

Once the solution E = E(t,x) is found, one can represent the solution of

$$\Box u=0, \ (10.1.2) \qquad \qquad u(0,x)=0 \;,\; \partial_t u(0,x)=f(x)$$

by

$$(10.1.3) u = E(t,.) * f.$$

Since

$$\hat{u}(t,\xi) = \hat{E}(t,\xi)\hat{f}(\xi),$$

comparing the representation of u with (3.3.7), we see that

(10.1.4)
$$\hat{E}(t,\xi) = \frac{\sin(t|\xi|)}{|\xi|}.$$

To construct fundamental solution we define s_+^{-z} for any complex number z with Rez < 1 by

(10.1.5)
$$s_{+}^{-z} = \begin{cases} s^{-z} & \text{if } s > 0 \\ 0 & \text{otherwise.} \end{cases}$$

It is clear that this is a classical function in $L^1_{loc}(\mathbf{R})$ for $\mathrm{Re}z < 1$. Note that

(10.1.6)
$$\frac{d}{ds}s_{+}^{-z} = -z \ s_{+}^{-z-1}, \text{ for Re } z < 0.$$

The above relation enables one to extend the definition of s_+^{-z} for $1 \le \text{Re}z < 2$. Namely, we define (for $1 \le \text{Re}z < 2$)

(10.1.7)
$$s_{+}^{-z} = \frac{1}{(-z+1)} \frac{d}{ds} (s_{+}^{-z+1}),$$

where the derivative in the right side is taken in the sense of distributions. Moreover for $k \leq \text{Re} z < k+1$ we define s_+^{-z} by the relation

(10.1.8)
$$s_{+}^{-z} = \frac{1}{(-z+1)...(-z+k)} \left(\frac{d}{ds}\right)^{k} \left(s_{+}^{-z+k}\right)^{z}$$
$$= \frac{\Gamma(-z+1)}{\Gamma(-z+k+1)} \left(\frac{d}{ds}\right)^{k} s_{+}^{-z+k},$$