7 Weighted Sobolev spaces on flat space

7.1 Abstract localized norms

Definition 7.1.1 Let A be a Banach space with norm $\|\cdot\|_A$. A Paley-Littlewood partition of identity (PL partition for short) is a sequence $\pi = \{\pi_j\}_{j\geq 0}$ of bounded operators on A such that: the series $\sum_{j\geq 0} \pi_j$ converges strongly (i.e., pointwise) to the identity operator on A, and in addition there exists an integer $N\geq 1$ such that

(7.1.1)
$$\pi_j \pi_k = 0 \text{ for } |j-k| \ge N.$$

Remark 7.1.1 We shall frequently encounter the following situation: we have two real valued functions $\phi(x)$ and $\psi(x)$ defined on some domain D, so that there exists a constant C > 0 such that for all $x \in D$

$$(7.1.2) C^{-1}\phi(x) \leq \psi(x) \leq C\phi(x).$$

In such cases we shall say that ϕ and ψ are equivalent on D, and we shall write

$$\phi(x) \sim \psi(x)$$

for $x \in D$.

Example 7.1.1 Let $\{\phi_j\}_{j\geq 0}$ be a Paley-Littlewood partition of unity on \mathbb{R}^n , i.e., a sequence $\phi_j \in C_c^{\infty}(\mathbb{R}^n)$ such that $\phi_j \geq 0$, $\sum \phi_j = 1$, and

$$(7.1.4) \quad \operatorname{supp} \phi_0 \subseteq \{|x| \le 2\}, \qquad \operatorname{supp} \phi_j \subseteq \{2^{j-1} \le |x| \le 2^{j+1}\} \quad j \ge 1.$$

More precisely, fix an arbitrary nonnegative $\psi \in C_c^{\infty}(\mathbb{R}^n)$, $0 \le \psi \le 1$, equal to 1 on the ball B(0,1/2) and vanishing outside B(0,1), and define

$$(7.1.5) \phi(x) = \psi(x/2) - \psi(x), \quad \phi_0(x) = \psi(x/2), \quad \phi_j(x) = \phi(2^{-j}x), \ j \ge 1.$$

This gives a partition of unity satisfying 7.1.4, and we shall call it a (standard) Paley-Littlewood partition of unity (PL partition for short).

We remark that if we choose $A = L^p(\mathbb{R}^n)$, $p \in [1, \infty]$, and define $\pi_j : A \to A$ as the multiplication operator by ϕ_j then $\pi = \{\pi_j\}$ is a PL partition of identity in the sense of Definition 7.1.1. Moreover, it satisfies the following important property, which will be used several times in the sequel: for any $1 \le p < \infty$

(7.1.6)
$$||u||_{L^{p}(\mathbb{R}^{n})}^{p} \sim \sum_{j>0} ||\phi_{j}u||_{L^{p}(\mathbb{R}^{n})}^{p}$$

and similarly

$$||u||_{L^{\infty}(\mathbb{R}^n)} \sim \sup_{j\geq 0} ||\phi_j u||_{L^{\infty}(\mathbb{R}^n)}.$$