5 Stationary phase method and pseudodifferential operators

5.1 Stationary phase method

In this section we shall give a brief review of the methods to study the asymptotic behavior of oscillatory integrals of type

(5.1.1)
$$I(R) = \int_{\mathbf{R}^n} e^{iR\phi(x)} f(x) dx$$

as R > 0 tends to infinity.

Here f(x), $\phi(x)$ are smooth functions defined on \mathbb{R}^n with $\phi(x)$ being real-valued.

First, we consider the case, when the phase function $\varphi(x)$ has no critical points. More precisely, we consider the case, when there exist $\delta > 0, \delta \leq 1$ and C > 0 so that

(5.1.2)
$$|\nabla \phi(x)| \ge C^{-1} < x >^{\delta}, \quad ^2 = 1 + |x|^2,$$

$$|\partial_x^{\alpha} \vee \phi(x)| \le C < x >^{-|\alpha|}$$

for any $x \in \text{supp} f$.

Lemma 5.1.1 Suppose the assumptions (5.1.2), (5.1.3) are fulfilled and f(x) is a smooth function with compact support. Then for any integer $N \ge 0$ and for any $\varepsilon > 0$ we have

$$|I(R)| \leq \frac{C}{R^N} \sum_{|\alpha| \leq N} \| \langle x \rangle^{-N\delta - N + |\alpha| + n/2 + \varepsilon} \partial^{\alpha} f \|_{L^2(\mathbb{R}^n)}.$$

Proof. Given any first order differential operator

$$L(x,\partial_x) = (\sum_{j=1}^n a_j(x)\partial_{x_j}) + b(x),$$

we denote by L^* its adjoint operator with respect to the inner product in $L^2(\mathbb{R}^n)$, i.e.

$$L^*(x,\partial_x) = -(\sum_{j=1}^n \overline{a_j(x)}\partial_{x_j}) + \overline{b(x)} + \sum_{j=1}^n \partial_{x_j}\overline{a_j(x)}.$$

Therefore, for any couple f, g of smooth compactly supported functions on \mathbb{R}^n we have

(5.1.4)
$$(Lf,g)_{L^2(\mathbb{R}^n)} = (f,L^*g)_{L^2(\mathbb{R}^n)}.$$

Let $L(x, \partial_x)$ be the differential operator, such that its adjoint is

$$L^* = i^{-1} \sum_{k=1}^n \frac{\partial_{x_k} \phi}{|\nabla \phi|^2} \partial_{x_k},$$

60