Part IV

Appendix

A Vertex superalgebras

A.1 \mathbb{Z}_2 -graded vector spaces

A vector space M with a direct sum decomposition $M=M_{\overline{0}}\oplus M_{\overline{1}}$ is called a \mathbb{Z}_2 -graded vector space. Elements of $M_{\overline{0}}$ are called even whereas those of $M_{\overline{1}}$ odd. We set

$$p(v) = \begin{cases} 0, & \text{if } v \text{ is even,} \\ 1, & \text{if } v \text{ is odd.} \end{cases}$$

For any $v \in M$, let v' (resp. v'') be the even (resp. odd) part of v: v = v' + v'' where p(v') = 0 and p(v'') = 1. We will abbreviate $(-1)^{p(v)}$ by $(-1)^v$, $(-1)^{p(u)p(v)}$ by $(-1)^{uv}$ and so on.

For a \mathbb{Z}_2 -graded vector space $M=M_{\overline{0}}\oplus M_{\overline{1}}$, the space End M is canonically \mathbb{Z}_2 -graded by setting

$$(\operatorname{End} M)_{\overline{i}} = \{a \in \operatorname{End} M \, | \, a(M_{\overline{j}}) \subset M_{\overline{i} + \overline{j}}\},$$

namely, by setting a'(v) = a(v')' + a(v'')'' and a''(v) = a(v')'' + a(v'')'.

The supercommutator of $a, b \in \text{End } M$ is defined by

$$[a,b] = (a'b' - b'a') + (a'b'' - b''a') + (a''b' - b'a'') + (a''b'' + b''a'').$$

We will simply write this as $[a, b] = ab - (-1)^{ab}ba$. Then we have $[b, a] = -(-1)^{ab}[a, b]$ and the Jacobi identity

$$[[a,b],c] = [a,[b,c]] - (-1)^{ab}[b,[a,c]],$$

which is also written as

$$(-1)^{ca}[a, [b, c]] + (-1)^{ab}[b, [c, a]] + (-1)^{bc}[c, [a, b]] = 0.$$

Let M and N be \mathbb{Z}_2 -graded vector spaces. The tensor product $M \otimes N$ of vector spaces is canonically \mathbb{Z}_2 -graded by setting

$$(M\otimes N)_{\overline{0}}=(M_{\overline{0}}\otimes N_{\overline{0}})\oplus (M_{\overline{1}}\otimes N_{\overline{1}}),\quad (M\otimes N)_{\overline{1}}=(M_{\overline{0}}\otimes N_{\overline{1}})\oplus (M_{\overline{1}}\otimes N_{\overline{0}}).$$

The tensor product of $a \in \text{End } M$ and $b \in \text{End } N$ is defined by

$$(a \otimes b)(u \otimes v) = (-1)^{bu} a(u) \otimes b(v).$$