Advanced Studies in Pure Mathematics 54, 2009 Algebraic Analysis and Around pp. 95–107

A conjectural presentation of fusion algebras

Arzu Boysal and Shrawan Kumar

Dedicated to Prof. Masaki Kashiwara on his sixtieth birthday

§1. Introduction

Let G be a connected, simply-connected, simple algebraic group over \mathbb{C} . We fix a Borel subgroup B of G and a maximal torus $T \subset B$. We denote their Lie algebras by $\mathfrak{g}, \mathfrak{b}, \mathfrak{h}$ respectively. Let $P_+ \subset \mathfrak{h}^*$ be the set of dominant integral weights. For any $\lambda \in P_+$, let $V(\lambda)$ be the finite dimensional irreducible \mathfrak{g} -module with highest weight λ . We fix a positive integer ℓ and let $\mathcal{R}_{\ell}(\mathfrak{g})$ be the free \mathbb{Z} -module with basis $\{V(\lambda) : \lambda \in P_{\ell}\}$, where

$$P_{\ell} := \{ \lambda \in P_+ : \lambda(\theta^{\vee}) \le \ell \},\$$

 θ is the highest root of \mathfrak{g} and θ^{\vee} is the associated coroot. There is a product structure on $\mathcal{R}_{\ell}(\mathfrak{g})$, called the *fusion product* (cf. Section 3), making it a commutative associative (unital) ring. In this paper, we consider its complexification $\mathcal{R}_{\ell}^{\mathbb{C}}(\mathfrak{g})$, called the *fusion algebra*, which is a finite dimensional (commutative and associative) algebra without nilpotents.

Let $\mathcal{R}(\mathfrak{g})$ be the Grothendieck ring of finite dimensional representations of \mathfrak{g} and let $\mathcal{R}^{\mathbb{C}}(\mathfrak{g})$ be its complexification. As given in 3.6, there is a surjective ring homomorphism $\beta : \mathcal{R}(\mathfrak{g}) \to \mathcal{R}_{\ell}(\mathfrak{g})$. Let $\beta^{\mathbb{C}} : \mathcal{R}^{\mathbb{C}}(\mathfrak{g}) \to \mathcal{R}_{\ell}^{\mathbb{C}}(\mathfrak{g})$ be its complexification and let $I_{\ell}(\mathfrak{g})$ denote the kernel of $\beta^{\mathbb{C}}$. Since $\mathcal{R}_{\ell}^{\mathbb{C}}(\mathfrak{g})$ is an algebra without nilpotents, $I_{\ell}(\mathfrak{g})$ is a radical ideal.

The main aim of this note is to conjecturally describe this ideal $I_{\ell}(\mathfrak{g})$. Before we describe our result and conjecture, we briefly describe the known results in this direction. Identify the complexified representation ring $\mathcal{R}^{\mathbb{C}}(\mathfrak{g})$ with the polynomial ring $\mathbb{C}[\chi_1, \ldots, \chi_r]$, where r is the rank of \mathfrak{g} and χ_i denotes the character of $V(\omega_i)$, the i^{th} fundamental representation of \mathfrak{g} . It is generally believed (initiated by the physicists) that

Received February 21,2008.

Revised June 11, 2008.