Advanced Studies in Pure Mathematics 51, 2008 Surveys on Geometry and Integrable Systems pp. 489–510

A-integrability of geodesic flows and geodesic equivalence

Peter Topalov

§1. Introduction

A common property of the metrics that admit non-trivial geodesic equivalence is that their geodesic flows admit families of pairwise commuting integrals of a special type (see [14, 7, 16, 17, 13]). The metrics studied in [1] and [20] have integrals with analogous properties. We consider this property as a definition of a new class of (pseudo) Riemannian metrics that we call *A*-integrable metrics. We prove that these metrics inherit the main properties of the metrics that admits non-trivial geodesic equivalence (see [16]).

Let M^n be a smooth *n*-dimensional manifold. By $\Gamma(E)$ we denote the space of the smooth sections of the vector bundle $\pi: E \to M^n$. Let $P \in \Gamma(\text{Hom}(TM, TM))$. We say that P is *diagonalizable over* \mathbb{R} on M^n if for every point $x \in M^n$ there exists a (real) basis in $T_x M^n$ such that the operator P(x) has diagonal form $P(x) = \text{diag}(\lambda_1, \ldots, \lambda_n)$.

Definition 1. Let g be a (pseudo) Riemannian metric on the manifold M^n and let $A \in \Gamma(\text{Hom}(TM, TM))$ be a self-adjoint operator which is diagonalizable over \mathbb{R} on M^n with respect to g. The metric g is called A-integrable if the functions from the one-parameter family

(1)
$$I_c(\xi) \stackrel{\text{def}}{=} \det(A + c\mathbf{1})g((A + c\mathbf{1})^{-1}\xi, \xi)$$

are in involution with respect to the symplectic structure $\omega_g \stackrel{\text{def}}{=} FL_g^*\omega$. Here $FL_g: TM \to T^*M$ is the Legendre transformation corresponding to the metric g and ω is the canonical symplectic structure on T^*M .

Received January 3, 2001.

Revised November 4, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53D25.