Advanced Studies in Pure Mathematics 45, 2006 Moduli Spaces and Arithmetic Geometry (Kyoto, 2004) pp. 315-326

Polarized K3 surfaces of genus thirteen

Shigeru Mukai

A smooth complete algebraic surface S is of type K3 if S is regular and the canonical class K_S is trivial. A primitively polarized K3 surface is a pair (S, h) of a K3 surface S and a primitive ample divisor class $h \in \operatorname{Pic} S$. The integer $g := \frac{1}{2}(h^2) + 1 \ge 2$ is called the genus of (S, h). The moduli space of primitively polarized K3 surfaces of genus g exists as a quasi-projective (irreducible) variety, which we denote by \mathcal{F}_g . As is well known a general polarized K3 surface of genus $2 \le g \le 5$ is a complete intersection of hypersurfaces in a weighted projective space: $(6) \subset \mathbf{P}(1112), (4) \subset \mathbf{P}^3, (2) \cap (3) \subset \mathbf{P}^4$ and $(2) \cap (2) \subset \mathbf{P}^5$.

In connection with the classification of Fano threefolds, we have studied the system of defining equations of the projective model $S_{2g-2} \subset \mathbf{P}^g$ and shown that a general polarized K3 surface of genus g is a complete intersection with respect to a homogeneous vector bundle \mathcal{V}_{g-2} (of rank g-2) in a g-dimensional Grassmannian G(n,r), g = r(n-r), in a unique way for the following six values of g:

$\int g$	6	8	9	10
r	2	2	3	5
\mathcal{V}_{g-2}	$3\mathcal{O}_G(1)\oplus\mathcal{O}_G(2)$	$6\mathcal{O}_G(1)$	$igwedge^2 \mathcal{E} \oplus 4\mathcal{O}_G(1)$	$\bigwedge^4 \mathcal{E} \oplus 3\mathcal{O}_G(1)$
<u>v</u>				

12	20
3	4
$3\bigwedge^2 \mathcal{E}\oplus \mathcal{O}_G(1)$	$3 \bigwedge^2 \mathcal{E}$

Here \mathcal{E} is the universal quotient bundle on G(n, r). See [4] and [5] for the case $g = 6, 8, 9, 10, [6, \S5]$ for g = 20 and $\S3$ for g = 12.

By this description, the moduli space \mathcal{F}_g is birationally equivalent to the orbit space $H^0(G(n,r), \mathcal{V}_{g-2})/(PGL(n) \times Aut_{G(n,r)} \mathcal{V}_{g-2})$ and

Received May 30, 2005.

Revised October 5, 2005.

Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 17340006.