Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 95–108

Short \mathbb{C}^k

John Erik Fornæss

§1. Introduction

One of Oka's main contributions was to solve the Levi problem.

There are various ways to generalize the Levi Problem. The Union problem is one: Let $\Omega_0 \subset \Omega_1 \subset \cdots \subset \cup \Omega_n = \Omega$. Suppose that each Ω_j is Stein. Is Ω Stein? To approach the Union Problem, one can try at first to understand the simplest cases of Ω .

Example 1.1. Long \mathbb{C}^2 . Suppose that each Ω_j is biholomorphic to \mathbb{C}^2 . Then we call Ω a long \mathbb{C}^2 . It is an open question whether all long \mathbb{C}^2 are actually biholomorphic to \mathbb{C}^2 .

Example 1.2. (Fornæss, ([F, 1976])) In dimension 3 and higher it can happen that Ω is not Stein and that each Ω_n is biholomorphic to a ball.

This left open the question in dimension 2.

Theorem 1.3. (Fornæss-Sibony, ([FS, 1981])) Suppose that each Ω_j is biholomorphic to the unit ball in \mathbb{C}^2 . If the (infinitesimal) Kobayashi metric of Ω is not identically zero, then Ω is biholomorphic to the ball or to $\Delta \times \mathbb{C}$, where Δ is the unit disc.

Recall that the (infinitesimal) Kobayashi metric of Ω vanishes identically if and only if for all $p \in \Omega$ and any tangent vector ξ to Ω at p and for any R > 0, there exists a holomorphic map $f : \Delta = \{z \in \mathbb{C}; |z| < 1\} \to \Omega$ so that f(0) = p and $f'(0) = R\xi$.

This theorem left still open the case when the Kobayashi metric vanishes identically. The most obvious example of such a case is when $\Omega = \mathbb{C}^2$. However, the question remaining was whether there was any

Received December 19, 2001.