Advanced Studies in Pure Mathematics 41, 2004 Stochastic Analysis and Related Topics pp. 233–246

Stochastic Newton Equation with Reflecting Boundary Condition

Shigeo Kusuoka

§1. Introduction

Let D be a bounded domain in \mathbf{R}^d with a smooth boundary and $n(x), x \in \partial D$, be an outer normal vector. Let $a^{ij} : \mathbf{R}^d \to \mathbf{R}$, $i, j = 1, \ldots d$, be smooth functions such that $a^{ij}(x) = a^{ji}(x), x \in \mathbf{R}^d$. Also, let $b^i : \mathbf{R}^{2d} \to \mathbf{R}, i = 1, \ldots d$, be bounded measurable functions. We assume that there are positive constants C_0, C_1 such that

$$C_0|\xi|^2\leq \sum_{i,j=1}^d a^{ij}(x)\xi_i\xi_j\leq C_1|\xi|^2,\qquad x,\xi\in \mathbf{R}^d.$$

Let L_0 be a second order linear differential operator in \mathbf{R}^{2d} given by

$$L_0 = \sum_{i=1}^d v^i \frac{\partial}{\partial x^i} + \frac{1}{2} \sum_{i,j=1}^d a^{ij}(x) \frac{\partial^2}{\partial v^i \partial v^j} + \sum_{i=1}^d b^i(x,v) \frac{\partial}{\partial v^i}$$

Let $\tilde{W}^d = C([0,\infty); \mathbf{R}^d) \times D([0,\infty); \mathbf{R}^d)$. Now let $\Phi : \mathbf{R}^d \times \partial D \to \mathbf{R}^d$ be a smooth map satisfying the following .

(i) $\Phi(\cdot, x) : \mathbf{R}^d \to \mathbf{R}^d$ is linear for all $x \in \partial D$.

(ii) $\Phi(v,x) = v$ for any $x \in \partial D$ and $v \in T_x(\partial D)$, i.e., $\Phi(v,x) = v$ if $x \in \partial M$, $v \in \mathbf{R}^d$ and $v \cdot n(x) = 0$.

(iii) $\Phi(\Phi(v, x), x) = v$ for all $v \in \mathbf{R}^d$ and $x \in \partial D$.

(iv) $\Phi(n(x), x) \neq n(x)$ for any $x \in \partial D$.

The main theorem in the present paper is the following.

Theorem 1. Let $(x_0, v_0) \in (\overline{D})^c \times \mathbf{R}^d$. Then there exists a unique probability measure μ over \tilde{W}^d satisfying the following conditions. (1) $\mu(w(0) = (x_0, v_0)) = 1$. (2) $\mu(w(t) \in D^c \times \mathbf{R}^d, t \in [0, \infty)) = 1$.

Received April 4, 2003.