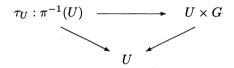
Advanced Studies in Pure Mathematics 41, 2004 Stochastic Analysis and Related Topics pp. 31–47

Equivariant Diffusions on Principal Bundles

K. David Elworthy, Yves Le Jan and Xue-Mei Li

Let $\pi : P \to M$ be a smooth principal bundle with structure group G. This means that there is a C^{∞} right multiplication $P \times G \to P$, $u \mapsto u \cdot g$ say, of the Lie group G such that π identifies the space of orbits of G with the manifold M and π is locally trivial in the sense that each point of M has an open neighbourhood U with a diffeomorphism



over U, which is equivariant with respect to the right action of G, i.e. if $\tau_u(b) = (\pi(b), k)$ then $\tau_u(b \cdot g) = (\pi(b), kg)$. Assume for simplicity that M is compact. Set n = dimM. The fibres, $\pi^{-1}(x)$, $x \in M$ are diffeomorphic to G and their tangent spaces $VT_uP(= kerT_u\pi)$, $u \in P$, are the 'vertical' tangent spaces to P. A connection on P, (or on π) assigns a complementary 'horizontal' subspace HT_uP to VT_uP in T_uP for each u, giving a smooth horizontal subbundle HTP of the tangent bundle TP to P. Given such a connection it is a classical result that for any C^1 curve: $\sigma : [0,T] \to M$ and $u_0 \in \pi^{-1}(\sigma(0))$ there is a unique horizontal $\tilde{\sigma} : [0,T] \to P$ which is a lift of σ , i.e. $\pi(\tilde{\sigma}(t)) = \sigma(t)$ and has $\tilde{\sigma}(0) = u_0$.

In his startling ICM article [8] Itô showed how this construction could be extended to give horizontal lifts of the sample paths of diffusion processes. In fact he was particularly concerned with the case when M is given a Riemannian metric $\langle , \rangle_x, x \in M$, the diffusion is Brownian motion on M, and P is the orthonormal frame bundle $\pi : OM \to M$. Recall that each $u \in OM$ with $u \in \pi^{-1}(x)$ can be considered as an isometry $u : \mathbb{R}^n \to T_x M, \langle , \rangle_x$ and a

Research supported by EPSRC grants GR/NOO 845 and GR/S40404/01, NSF grant DMS 0072387, and EU grant ERBF MRX CT 960075 A.

Received March 12, 2003.