Advanced Studies in Pure Mathematics 40, 2004 Representation Theory of Algebraic Groups and Quantum Groups pp. 121–139

Zeta Functions and Functional Equations Associated with the Components of the Gelfand-Graev Representations of a Finite Reductive Group

Charles W. Curtis and Ken-ichi Shinoda

§0. Introduction

Zeta functions and functional equations associated with them for representations of finite groups were first discussed by Springer [18] and Macdonald [14] for certain representations over the complex field \mathbb{C} of $GL_n(k)$ for a finite field $k = \mathbb{F}_q$. Their results, with one additional assumption, hold for irreducible representations over \mathbb{C} of an arbitrary finite group G embedded in GL(V), for an *n*-dimensional vector space V over k. In §1, a related functional equation is obtained for irreducible representations of Hecke algebras (or endomorphism algebras) \mathcal{H} of multiplicity free induced representations of finite groups.

The functional equation 1.2.1 for an irreducible representation π of G involves an ε -factor $\varepsilon(\pi, \chi)$ which is given by

$$\varepsilon(\pi,\chi) = q^{-n^2/2} (\deg \pi)^{-1} \sum_{g \in G} \zeta_{\pi^*}(g) \chi(\operatorname{Tr}(g)),$$

where ζ_{π^*} is the character of the contragredient representation π^* of π , χ is a nontrivial additive character of k, and Tr (g) is the trace of g in GL(V). The functional equations satisfied by irreducible representations f_{π} of \mathcal{H} , with π an irreducible component of the induced representation, have the form (see Proposition 1.5, §1)

$$f_{\pi}(h) = \varepsilon(\pi, \chi) f_{\pi}(h),$$

with $h \in \mathcal{H}$, and \tilde{h} a twisted Fourier transform of h (to be defined in §1). The ε -factor $\varepsilon(\pi, \chi)$ is also given by the formula

$$\varepsilon(\pi,\chi) = f_{\pi}(\widetilde{e}),$$

Received February 27, 2002.

Revised September 5, 2002.