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§1. Introduction 

In his very interesting (unpublished) 1979 notes [17] A. Mcintosh 
obtained the following arithmetic-geometric mean inequality for Hilbert 
space operators H, K, X: 

(1) IIHXKII ~ ~IIH*HX +XKK*II-

Among other things he also pointed out that simple alternative proofs for 
so-called Heinz-type inequalities ([9], and see also the discussions in §2) 
are possible based on this inequality. Then, about 15 years later Bhatia 
and Davis ([4]) noticed that the inequality remains valid for all unitarily 
invariant norms (including the Schatten norms II · liP and so on). Recall 
that a norm 111·111 for Hilbert space operators is called unitarily invariant 
when IIIUXVIII = IIIXIII for unitary operators U, V, and basic facts on 
these norms can be found for example in [8, 10, 19]. In recent years 
the arithmetic-geometric mean and related inequalities have been under 
active investigation by several authors, and very readable accounts on 
this subject can be found in [1, 3]. 

Motivated by all of the above, the authors have investigated sim­
ple unified proofs for known (as well as some new) norm inequalities, 
some refinement of the norm inequality (1) (such as the arithmetic­
logarithmic-geometric mean inequality), and a general theory on opera­
tor (and/or matrix) means in a series of recent articles [15, 11, 12]. The 
purpose of the present notes is to give a brief survey on the topics dealt 
in these articles. 

We will derive a variety of integral expressions for relevant operators 
to establish desired norm inequalities. This means that our arguments 
are not just for proving norm inequalities, but we are actually solving 
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