Advanced Studies in Pure Mathematics 38, 2004 Operator Algebras and Applications pp. 135–143

Single generation and rank of C*-algebras

Masaru Nagisa

§1. Introduction

We mainly treat a separable C*-algebra A in this article. Let S be a subset of A_{sa} . We call S a generator of A when any C*-subalgebra Bof A containing S is equal to A, and we denote $A = C^*(S)$. If S is finite, then we call A finitely generated and we define the number of generators gen(A) by the minimum cardinality of S which generates A. We denote $gen(A) = \infty$ unless A is finitely generated. We call a C*-algebra A singly generated if $gen(A) \leq 2$. Indeed, if $A = C^*(x, y)$ for $x, y \in A_{sa}$, then any C*-subalgebra B of A containing the element $x + \sqrt{-1}y$ is equal to A.

There are many works on single generation of operator algebras. Many of them concern to von Neumann algebras ([2],[6],[17], [19], [20], [24]). Concerning to C*-algebras, there are interesting works of D. Topping([22]), C. L. Olsen and W. R. Zame([15]). With related to them, we introduce the recent work ([11],[12]) of singly generated C*-algebras in the next section and mention the relation between singly generated C*-algebras and their ranks in the last section.

§2. Single generation of C^* -algebras

Let S be a subset of a C*-algebra A satisfying $A = C^*(S)$. If A is unital, then $\{s + 2||s|| | s \in S\}$ also generates A. So we may assume that an element of S is invertible. We mention about the fundamental property of gen(·) without the proof.

Lemma 1. [12] Let A and B be C^* -algebras.

2000 Mathematics Subject Classification. Primary 46L05; Secondary 46L35, 46L10.