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Introduction 

In [27], J.H.M. Steenbrink studied degenerations of Hodge struc­
tures. For f: X ----> ~ = { z E <C ; lzl < 1} projective and of semi-stable 
degeneration, he showed that a "limit Hodge structure" appears as the 
limit of the Hodge structures Hm(Xt,7!..) (mE 71.., t E ~- {0}). In log 
Hodge theory, as in [23], his theory is interpreted in the form "the higher 
direct images on ~ of 7l..x carry the natural variations of polarized log 
Hodge structure." 

In this paper, we will generalize the theory of Steenbrink in this 
form to the theory with coefficients (that is, we will start with general 
variations of polarized log Hodge structure 'Hz on X instead of 7l..x ). 
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