Advanced Studies in Pure Mathematics 36, 2002 Algebraic Geometry 2000, Azumino pp. 269–320

Log C^{∞} -Functions and Degenerations of Hodge Structures

Kazuya Kato, Toshiharu Matsubara and Chikara Nakayama

Contents

1.	$\operatorname{Log} C^{\infty}$ -functions	271
2.	Log C^{∞} Hodge decompositions	274
3.	$\operatorname{Log} \overline{\partial}$ -Poincaré lemma	287
4.	Relative log Poincaré lemma	292
5.	Consequences of the relative log Poincaré lemma	296
6.	Log Kähler metrics	299
7.	Log harmonic forms	300
8.	Higher direct images of variations of polarized log Hodge	
	structure	309

Introduction

In [27], J.H.M. Steenbrink studied degenerations of Hodge structures. For $f: X \longrightarrow \Delta = \{z \in \mathbb{C} ; |z| < 1\}$ projective and of semi-stable degeneration, he showed that a "limit Hodge structure" appears as the limit of the Hodge structures $H^m(X_t, \mathbb{Z}) \ (m \in \mathbb{Z}, t \in \Delta - \{0\})$. In log Hodge theory, as in [23], his theory is interpreted in the form "the higher direct images on Δ of \mathbb{Z}_X carry the natural variations of polarized log Hodge structure."

In this paper, we will generalize the theory of Steenbrink in this form to the theory with coefficients (that is, we will start with general variations of polarized log Hodge structure $\mathcal{H}_{\mathbb{Z}}$ on X instead of \mathbb{Z}_X).

Received March 13, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 14A20, 14D07, 32G20. Keywords: variation of Hodge structure, limit of Hodge structures, nilpotent orbit, log geometry.