Advanced Studies in Pure Mathematics 31, 2001 Taniguchi Conference on Mathematics Nara '98 pp. 265–286

Large Deviation and Hydrodynamic Scaling

Srinivasa R. S. Varadhan

$\S1$. What are Large Deviations?

The theory of large deviations is, roughly speaking, a method of describing the rapidity with which probability distributions depending on a parameter approach the degenerate distribution at some point as the parameter becomes large.

Let us suppose that for each n there is a probability measure P_n on some space Ω_n defined on some σ -field Σ_n . There is a complete separable metric space X with its Borel sets \mathcal{B} , such that for each nthere is a measurable map Φ_n of Ω_n into X. We denote the induced measure $P_n \Phi_n^{-1}$ on (X, \mathcal{B}) by Q_n . Actually it is the situation (X, \mathcal{B}, Q_n) that will be of interest to us. As $n \to \infty$ the measures Q_n will converge weakly to a limit which will be degenrate at some point x_0 of X. This is usually a 'law of large numbers', statement. In particular for any closed set $A \subset X$, with $x_0 \notin A$,

(1.1)
$$\lim_{n \to \infty} Q_n(A) = 0.$$

If the parametrization has been chosen properly, the convergence in the limit (1.1) will often be exponentially fast and

(1.2)
$$\lim_{n \to \infty} \frac{1}{n} \log Q_n(A) = -\Psi(A)$$

will exist at least for a large class nice sets. Since the exponential behavior of a sum is the same as that of the larger of the summands

$$\Psi(A \cup B) = \min\{\Psi(A), \Psi(B)\}$$

and one can expect $\Psi(A)$ to be given by a formula of the type

$$\Psi(A) = \inf_{x \in A} I(x)$$

Received December 2, 1999.