Probability and Geometry

Paul Malliavin

Summary

PART I: Finite dimensional Geometry.

- 1. Passage from the local to the global through Comparison Lemmas for SDE.
- 2. The ground state of a vector bundle.
- Transfer principle from ODE to SDE and Stochastic Calculus of Variations.
- 4. Mean Value Formulae for harmonic differential forms.

PART II: Geometry of Path Spaces.

- 5. Path Space as a parallelized manifold; Tangent Process.
- 6. Intertwining formulae; Integration by part formulae.
- 7. Construction of measures in infinite dimension through infinitesimal geometry.

Part III: Differential Geometry in infinite dimension and Stochastic Analysis.

- 8. Vectors fields; their divergence and their flow.
- $9. \ \ Divergence \ and \ Geometrization \ of \ Anticipative \ Stochastic \ Calculus.$
- 10. Geometric measure theory, Principle of Descent.

PART IV: Integration on some infinite dimensional groups.

- 11. From Path Group to Loop Group.
- 12. Heat equation on some infinite dimensional groups.

Fifty years back, Kiyosi Itô started the theory of *Stochastic Differential Equations* (SDE) in a fully geometric framework; in particular he constructed the heat process associated to an elliptic operator on a manifold by patching together Stochastic Differential Equations, the change

Received October 18, 1999.