Advanced Studies in Pure Mathematics 31, 2001 Taniguchi Conference on Mathematics Nara '98 pp. 127–145

The Topology of Real and Complex Algebraic Varieties

János Kollár

Contents

- 1. Introduction.
- 2. Homological Methods.
- 3. The Realization Problem.
- 4. The Recognition Problem over \mathbb{C} .
- 5. Rational and Uniruled Varieties.
- 6. The Nash Conjecture for 3-folds.
- 7. The Nonprojective Nash Conjecture. References.

§1. Introduction

Definition 1.1. Let $f_i(x_1, \ldots, x_n)$ be polynomials whose coefficients are real or complex numbers. An *affine algebraic variety* is the common zero set of finitely many such polynomials

$$X = X(f_1, \ldots, f_k) := \{ \mathbf{x} \mid f_i(\mathbf{x}) = 0, \forall i \}.$$

To be precise, I also have to specify where the variables x_i are. If the f_i have complex coefficients then the only sensible thing is to let the x_i be complex. The resulting topological space is

$$X(\mathbb{C}) := \{ \mathbf{x} \in \mathbb{C}^n \mid f_i(\mathbf{x}) = 0, \, \forall i \},\$$

which we always view with its Euclidean topology. If the f_i have real coefficients then we can let the x_i be real or complex. Thus we obtain two "incarnations" of a variety

$$egin{aligned} X(\mathbb{R}) &:= \{ \mathbf{x} \in \mathbb{R}^n \mid f_i(\mathbf{x}) = 0, \, orall i \}, & ext{ and } \ X(\mathbb{C}) &:= \{ \mathbf{x} \in \mathbb{C}^n \mid f_i(\mathbf{x}) = 0, \, orall i \}. \end{aligned}$$

Received April 21, 1999.

Partial financial support was provided by the Taniguch Foundation and by the NSF under grant number DMS-9622394.