Advanced Studies in Pure Mathematics 25, 1997 CR-Geometry and Overdetermined Systems pp. 167–220

Invariant Theory of the Bergman Kernel

Kengo Hirachi and Gen Komatsu

Dedicated to Professor M. Kuranishi on his 70th birthday

Introduction

This article is a brief report of recent developments in Fefferman's program, proposed and initiated in [F3], concerning invariant expression of the singularity of the Bergman kernel K^{B} on the diagonal of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$ with smooth boundary. It was proved by Fefferman in [F1] that

(0.1)
$$K^{\mathrm{B}} = \frac{\varphi^{\mathrm{B}}}{r^{n+1}} + \psi^{\mathrm{B}} \log r \quad \text{with } \varphi^{\mathrm{B}}, \ \psi^{\mathrm{B}} \in C^{\infty}(\overline{\Omega}),$$

where $r \in C^{\infty}$ is a defining function of the boundary $\partial\Omega$ such that r > 0in Ω and $dr \neq 0$ on $\partial\Omega$. The problem is to choose r appropriately and express $\varphi^{\rm B}$ modulo $O^{n+1}(r)$ and $\psi^{\rm B}$ modulo $O^{\infty}(r)$ invariantly in the sense of local biholomorphic geometry. This can be compared with the asymptotic expansion of the heat kernel associated with the diagonal of a compact Riemannian manifold, where the time variable corresponds to the function r in (0.1). The boundary $\partial\Omega$ is approximated at every point by a sphere (hyperquadric), and carries a differential-geometric structure, called the CR (or pseudo-conformal) structure.

Let us employ an extrinsic approach due to Chern and Moser in [CM], [M], and put the boundary $\partial\Omega$ (formally) in Moser's normal form N(A) with $A = (A_{\alpha\overline{\beta}}^{\ell})$ given by

$$2\operatorname{Re} z_n = |z'|^2 + \sum_{|\alpha|, |\beta| \ge 2} \sum_{\ell=0}^{\infty} A_{\alpha\overline{\beta}}^{\ell} z_{\alpha}' \overline{z_{\beta}'} (\operatorname{Im} z_n)^{\ell},$$

where $z = (z', z_n) = (z_1, \ldots, z_{n-1}, z_n) \in \mathbb{C}^n$. (For the notation z'_{α} and $|\alpha|$ with ordered multi-indices α , see Subsection 1.1, (B) below.)

Received July 99, 1996