Advanced Studies in Pure Mathematics 25, 1997 CR-Geometry and Overdetermined Systems pp. 60-84

Aspects of Prescribing Ricci Curvature

Dennis DeTurck and Hubert Goldschmidt

Dedicated to Professor M. Kuranishi on his 70th birthday

§1. Introduction

This article concerns two problems involving the Ricci curvature of a Riemannian metric. In each of these problems, one seeks a metric whose Ricci curvature is prescribed in advance in some manner.

Let X be a manifold of dimension $n \geq 3$, whose tangent and cotangent bundles we denote by T and T^{*}, respectively. By $\bigotimes^{m} E$, $\bigwedge^{k} E$ and $S^{l}E$, we shall mean the *m*-th tensor power, *k*-th exterior product and the *l*-th symmetric product of a vector bundle *E* over *X*, respectively. Under the natural identification of Hom (T, T^{*}) with $T^{*} \otimes T^{*}$, we can view a symmetric 2-form *R* on *X*, that is, a section of $S^{2}T^{*}$, as a morphism $R^{\flat}: T \to T^{*}$; we shall consider the section det *R* of the line bundle Hom $(\bigwedge^{n} T, \bigwedge^{n} T^{*})$ which is induced by R^{\flat} .

The first problem consists in finding a Riemannian metric with prescribed Ricci tensor. We are given a section R of S^2T^* over X and we seek a Riemannian metric g in some neighborhood of a given point $x_0 \in X$ whose Ricci tensor $\operatorname{Ric}(g)$ is equal to R throughout this neighborhood. The first definitive results concerning the problem of prescribing the Ricci tensor were obtained in [4]. There it was shown that, if $R(x_0)$ is a non-degenerate symmetric quadratic form on T_{x_0} , then a solution of this problem always exists. Examples were also given showing that, when $R(x_0)$ is degenerate, a solution may or may not exist. In the present paper, our attention focuses on the problem of solving the equation $\operatorname{Ric}(g) = R$ when R is degenerate at every point of X, but has constant rank.

The second problem we consider here is the prescription of the principal Ricci curvatures of a Riemannian metric (without any prescription

Received April 20, 1996

The first author was supported in part by NSF Grant DMS 95-05175 and the second author was supported in part by NSF Grant DMS 92-03974.