Differential Systems Associated with Simple Graded Lie Algebras

Keizo Yamaguchi

Dedicated to Professor Noboru Tanaka on his sixtieth birthday

§0. Introduction

This is a survey paper on differential systems associated with simple graded Lie algebras. By a differential system (M, D), we mean a pfaffian system D (or a distribution in Chevalley's sense) on a manifold M, that is, D is a subbundle of the tangent bundle T(M) of M. Our primary subject will be the Lie algebra (sheaf) $\mathcal{A}(M, D)$ of all infinitesimal automorphisms of (M, D).

Let \mathfrak{g} be a simple Lie algebra over the field \mathbb{R} of real numbers. A gradation $\{\mathfrak{g}_p\}_{p\in\mathbb{Z}}$ of \mathfrak{g} is a direct decomposition $\mathfrak{g}=\bigoplus_{p\in\mathbb{Z}}\mathfrak{g}_p$ such that

$$[\mathfrak{g}_p,\mathfrak{g}_q]\subset\mathfrak{g}_{p+q}\qquad ext{for }p,\,q\in\mathbb{Z}.$$

Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a simple graded Lie algebra over \mathbb{R} satisfying $\mathfrak{g}_p = [\mathfrak{g}_{p+1}, \mathfrak{g}_{-1}]$ for p < -1. We denote by G the adjoint group of \mathfrak{g} and let G' be the normalizer of $\mathfrak{g}' = \bigoplus_{p \geq 0} \mathfrak{g}_p$ in G;

$$G' = \{ \sigma \in G \mid \sigma(\mathfrak{g}') = \mathfrak{g}' \}.$$

We consider the homogeneous space $M_{\mathfrak{g}}=G/G'$, which is a real or complex manifold (R-space) depending on whether the complexification $\mathbb{C}\mathfrak{g}$ of \mathfrak{g} is simple or \mathfrak{g} is complex simple (see Proposition 3.3 in §3.2 and §4.1). By identifying \mathfrak{g} with the Lie algebra of left invariant vector fields on G, the G'-invariant subspace $\mathfrak{f}^{-1}=\mathfrak{g}_{-1}\oplus\mathfrak{g}'$ induces a G-invariant differential system $D_{\mathfrak{g}}$ on $M_{\mathfrak{g}}$, which is a holomorphic differential system when \mathfrak{g} is complex simple. $(M_{\mathfrak{g}},D_{\mathfrak{g}})$ is called the standard differential system of type $\mathfrak{g}=\bigoplus_{p\in\mathbb{Z}}\mathfrak{g}_p$ (§4.1).

Received April 5, 1991.

Revised May 27, 1991.