Advanced Studies in Pure Mathematics 22, 1993 Progress in Differential Geometry pp. 299–308

The Length Function of Geodesic Parallel Circles

Katsuhiro Shiohama and Minoru Tanaka

Dedicated to Professor T. Otsuki on his 75th birthday

§0. Introduction

The isoperimetric inequalities for a simply closed curve C on a Riemannian plane Π (i.e., a complete Riemannian manifold homeomorphic to \mathbf{R}^2) was first investigated by Fiala in [1] and later by Hartman in [2]. These inequalities were generalized by the first named author in [3], [4]for a simply closed curve on a finitely connected complete open surface and by both authors in [5] for a simply closed curve on an infinitely connected complete open surface. Here a noncompact complete and open Riemannian 2-manifold M is called *finitely connected* if it is homeomorphic to a compact 2-manifold without boundary from which finitely many points are removed, and otherwise M is called *infinitely connected*. Fiala and Hartman investigated certain properties of geodesic parallel circles $S(t) := \{x \in \Pi ; d(x, C) = t\}, t \ge 0$ around C of a Riemannian plane Π in order to prove the isoperimetric inequalities, where d denotes the Riemannian distance function. Fiala proved in [1] that if a Riemannian plane Π and a simple closed curve C on Π are *analytic*, then S(t)is a finite union of piecewise smooth simple closed curves except for t in a discrete subset of $[0,\infty)$ and its length L(t) is continuous on $[0,\infty)$. If Π and C are not analytic but smooth, then L(t) is not always continuous as pointed out by Hartman in [2]. What is worse is that S(t) does not always admit its length. Under the assumption of low differentiability of Π and C, Hartman proved that S(t) is a finite union of piecewise smooth simple closed curves except for t in a closed subset of Lebesgue measure zero in $[0,\infty)$. This result was recently extended by the authors [5] to an arbitrary given simply closed curve C in an arbitrary given complete, connected, oriented and noncompact Riemannian 2-manifold M.

Received January 7, 1991.

Revised April 5, 1991.