Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 267-270

Remarks on the Theorems of Takagi and Furtwängler

Tomio Kubota

Dedicated to Professor Kenkichi Iwasawa on his 70th birthday

The present article contains a short exposition of the fact that the fundamental inequality in Takagi's class field theory is almost a corollary of Furtwängler's theorems as far as unrestricted use of idele-theoretic terminology is allowed.

Let K/F be a cyclic extension of a finite degree *n* over an algebraic number field of a finite degree. Denote by I_L , P_L and C_L , the idele group, the principal idele group, and the idele class group of an algebraic number field *L*, respectively. Then, Takagi's fundamental inequality is written as $(C_F: N_{K/F}C_K) \ge n$. (See e.g. [2], p. 154).

Let, on the other hand, F be an algebraic number field containing the group $\mu_{(l)}$ of the *l*-th roots of unity with a prime number *l*. Then, it was shown by Furtwängler [1] that the following two theorems hold:

Theorem I). Product formula $\prod_{\mathfrak{p}} (\alpha, \beta/\mathfrak{p})_t = 1$ of the norm residue symbol $(\alpha, \beta/\mathfrak{p})_t$, where $\alpha, \beta \in F^{\times} = F - \{0\}$, and \mathfrak{p} runs through all places of F.

Theorem II). Principal genus theorem $H^{-1}(C_{\kappa}, \operatorname{Gal}(K/F))=1$ for an arbitrary Kummer extension K/F of degree l, which says that $N_{\kappa/F}a=1$ for $a \in C_{\kappa}$ entails $a=b^{1-s}$ with some $b \in C_{\kappa}$, where S is a generator of the Galois group Gal (K/F).

Furtwängler's theorems are fully idele-theoretic. The second theorem was originally stated by him in the form that an element of F which is everywhere a local norm from K is a global norm from K.

We shall show that these two theorems of Furtwängler easily yields Takagi's fundamental inequality.

Proposition 1. Let K/F be a cyclic extension of a finite degree over an algebraic number field F of a finite degree, and let K' be an intermediate field of K/F. Assume that $H^{-1}(C_K, \operatorname{Gal}(K/K')) = 1$ and $H^{-1}(C_{K'}, \operatorname{Gal}(K'/F)) = 1$. Then, $H^{-1}(C_K, \operatorname{Gal}(K/F)) = 1$.

Received October 26, 1987.