Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 261–265

Cyclotomic Z_p -extensions of $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$

Yûji Kida

Dedicated to Professor Kenkichi Iwasawa on his 70th birthday

In the theory of Z_p -extensions of a number field, the λ -invariant has a special meaning that it is an analogue of the genus of an algebraic curve. In this point of view, one can naturally hope that there exists a uniform bound for λ_p independent of p when the base field is fixed, and this bound might be regarded as the genuine analogue of the genus for a number field. This question has been studied by Ferrero [1, 2] and Metsänkylä [5, 6].

In this paper, we refine Ferrero's results for some imaginary quadratic fields, in particular for $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$.

§1.

We describe briefly how to get the exact values of a *p*-adic measure α defined below. We follow Sinnott [7] to construct a *p*-adic *L*-function. Let θ be an odd Dirichlet character with conductor *d*. We assume *d* is not a power of *p*. Define a rational function for θ by

$$F_{\theta}(X) = \sum_{a=1}^{d} \theta(a)(1+X)^{a} / \{(1+X)^{d} - 1\}.$$

Let \mathcal{O} be the integer ring of the field generated over Q_p by the values of θ , and let π be a prime element of \mathcal{O} . Then $F_{\theta}(X)$ can be expanded into a formal power series with \mathcal{O} -coefficients. Let α be the \mathcal{O} -valued *p*-adic measure corresponding to F_{θ} . Replace the period d in F_{θ} by dp^n . Then we get the following congruence from the fundamental correspondence between measures and power series:

$$\alpha(r+(p^n))(1+X)^r \equiv \{\sum' \theta(a)(1+X)^a\}/\{(1+X)^{dp^n}-1\}$$

(mod $(1+X)^{p^n}-1$),

where r is an integer satisfying $0 \le r < p^n$, and the sum \sum' is taken over all integers a with $1 \le a < dp^n$, $a \equiv r \pmod{p^n}$. Put X = 0. Then we have

Received December 26, 1987.