Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 139–169

On Nearly Ordinary Hecke Algebras for GL(2) over Totally Real Fields

Haruzo Hida

Dedicated to Kenkichi Iwasawa for his 70th birthday

Since this work is a continuation of our previous paper [8], we shall suppose the familiarity on the reader's part with the result and the notation in [8]. Especially we fix a rational prime p and a totally real field Fof degree d. Let \mathcal{O} be a valuation ring finite flat over Z_p containing all the conjugates of the integer ring r of F, and let Z (resp. \overline{Z}) be the Galois group of the maximal abelian extension of F unramified outside p and ∞ (resp. outside p). We denote by W the torsion-free part of Z. Then, for each weight v > 0, we have constructed in [8] the ordinary Hecke algebra finite and without torsion over the continuous group algebra $\mathcal{O}[W]$. The significance of this algebra lies in the fact that for every non-negative weight n parallel to -2v (i.e. the sum n+2v is a parallel weight), the Hecke algebra $\mathfrak{h}_{k,w}^{\mathrm{ord}}(p^{\alpha}; \mathcal{O})$ (k=n+2t, w=v+k-t) over \mathcal{O} , for the space of holomorphic Hilbert cusp forms for F of level p^{α} and of weight (k, w), can be uniquely obtained as a residue algebra of $h_v^{\text{ord}}(1; \mathcal{O})$. Strictly speaking, this algebra $h_v^{\text{ord}}(1; \mathcal{O})$ cannot be called ordinary when v > 0 since the Hecke operator T(p) in $h_v^{\text{ord}}(1; \mathcal{O})$ is in fact divisible exactly by p^v . This algebra $h_v^{ord}(1; \mathcal{O})$ cannot be either said universal because of the restriction to the weight n which requires n to be parallel to the fixed weight -2v. Thus, there exists infinitely many Hecke algebras $h_n^{\text{ord}}(1; \mathcal{O})$ parametrized by the weights v modulo parallel ones. In this paper, we shall unify these infinitely many Hecke algebras $h_v^{\text{ord}}(1; \mathcal{O})$ and construct a unique universal one $h^{\text{ord}}(1; \mathcal{O})$ from which each $h_n^{\text{ord}}(1; \mathcal{O})$ can be obtained as a residue algebra for all non-negative v.

Although we shall postpone the exact formulation of our result to § 2 of this paper, let us make it a little more precise. Let \overline{Z}_0 be the subgroup of Z generated by the inertia groups at all the prime ideals of r over p, and put $G = \overline{Z}_0 \times r_p^{\times}$, where $r_p = r \otimes_Z Z_p$ is the p-adic completion of the integer ring r of F. Let I be the set of all embeddings of F into \overline{Q} , and put $t = \sum_{\sigma} \sigma \in \mathbb{Z}[I]$. We shall say that a weight $k \in \mathbb{Z}[I]$ is parallel if k

Received December 23, 1987.