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§ 1. Introduction 

Let F be an even 2N dimensional vector space over Q, and p be a 
non degenerate alternating bilinear form on F. We put 

FR=F©R~R 2N, 

Sp(F, ft)={g e aut (F)Jp(gu, gv)=p(u, v)}, 

and 

{ 

]
2 =-1 l 

fJ(F, p)= J e aut(FR) p(u, Jv)=symmetric on u, v ; 

p(u, Ju)>O for O=t-"u E F 

and we call fJ(F, p) the Siegel half space. 
An element J of fJ(F, p) is a complex structure of the real vector 

space FR, therefore it defines a complex vector space (FR, J) of N di­
mension, which we denote by E or EJ. The group Sp(F, p) operates on 
fJ(F, p) by 
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