The Structure of the Icosahedral Modular Group

Ryoichi Kobayashi and Isao Naruki

Dedicated to Prof. Friedrich Hirzebruch and Prof. Ichiro Satake on their sixtieth birthdays

Introduction

By the group in the title we mean the Hilbert modular group PSL(2, O) where \mathcal{O} is the ring of integers in the number field $O(\sqrt{5})$. This naming here comes from the following fact: Hirzebruch [H] studied the irreducible action over $H \times H$ $(H := \{z \in C; \text{Im}(z) > 0\})$ of the principal congruence subgroup $\Gamma = \Gamma(2)$ of $SL(2, \emptyset)$ associated with the prime ideal (2) $\subseteq \emptyset$ and showed that the compactified quotient $\overline{H \times H/\Gamma}$ is equivariantly birational to the projective plane $P_{0}(C)$ acted nontrivially by the icosahedral group $\mathfrak{A}_5 \cong PSL(2, \mathcal{O}/(2))$ ($\mathcal{O}/(2) \cong F_4$; \mathfrak{A}_5 : the alternating group of degree five). Γ can be regarded as a subgroup of $PSL(2, \emptyset)$ since $-1 \notin \Gamma$. It acts even freely on $H \times H$ and the description in [H] is so explicit that one can describe the arithmetic group Γ as some quotient group of π_1 of the complement of the icosahedral arrangement. This arrangement consists of the reflecting lines of fifteen involutions in \mathfrak{A}_5 and is therefore mapped into itself by the group. Thus, if one calculates π_1 of the quotient by \mathfrak{A}_5 of the complement, then one succeeds in determining the structure of $PSL(2, \mathcal{O})$. Since we have only a few Hilbert modular groups for which the group-structure is combinatorially described, this is naturally of interest and is the purpose of this note. The main result is stated as follows:

Theorem. The icosahedral modular group $PSL(2, \mathcal{O})$ is isomorphic to the group generated by three elements α , β , γ with the fundamental relation;

$$\begin{cases} \alpha\beta = \beta\alpha & \alpha\gamma\alpha = \gamma\alpha\gamma & \beta\gamma\beta\gamma\beta = \gamma\beta\gamma\beta\gamma \\ (\beta\gamma)^2 = 1 & (\alpha\gamma)^3 = 1. \end{cases}$$

Moreover, if we define the homomorphism $h: PSL(2, \mathcal{O}) \rightarrow \mathfrak{A}_5$ by setting $h(\alpha) = (1, 4)(2, 5)$, $h(\beta) = (1, 2)(4, 5)$, $h(\gamma) = (1, 4)(2, 3)$, then we obtain the exact sequence:

Received April 24, 1987. Revised March 2, 1988.