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In this paper, we shall give some general method how to calculate 
the multiplicity of a given finite group which appears as the automorphism 
groups of the lattices, up to isometry, in a fixed genus in a positive 
definite metric space, and apply it to the binary quaternion hermitian 
cases, motivated by the theory of supersingular abelian varieties developed 
in Katsura-Oort [12]. Our Main Theorems are Theorems 7.1 and 7.2 in 
§ 7. More precisely, we shall consider the following problems. Let B 
be either the rational number field Q, an imaginary quadratic field over 
Q, or a definite quaternion algebra over Q. Let (V, h) be a pair of a 
finite dimensional left B-vector space V over B and a positive definite 
hermitian metric h on B with respect to the unique positive involution of 
B. Denote by G= G(V, h) the group of similitudes of (V, h); 

G={g E GLs(V); h(xg, yg)=n(g)h(x, y) (x, y E V) for some n(g) E Qx}. 

Let 2 be a fixed genus of some lattices in V. 

Problem 1. Calculate the class number H =#(2/G) of 2. 

It is known that Problem 1 can be solved at least in principle by 
means of the trace formula (cf. Hashimoto [3]), and some explicit calcula
tions have been done by several mathematicians. Now, our main theme 
in this paper is the following Problem 2. Denote by L 1, • • ·, LH a 
complete set of representatives of the classes in 2. For each i (I~ i ~ H), 
put 

It is easy to see that this is a finite group for each i, because of our 
assumption that h is positive definite. 
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