Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 301-349

On Automorphism Groups of Positive Definite Binary Quaternion Hermitian Lattices and New Mass Formula

Tomoyoshi Ibukiyama

Dedicated to Professor Ichiro Satake on his sixtieth birthday

In this paper, we shall give some general method how to calculate the multiplicity of a given finite group which appears as the automorphism groups of the lattices, up to isometry, in a fixed genus in a positive definite metric space, and apply it to the binary quaternion hermitian cases, motivated by the theory of supersingular abelian varieties developed in Katsura-Oort [12]. Our Main Theorems are Theorems 7.1 and 7.2 in § 7. More precisely, we shall consider the following problems. Let *B* be either the rational number field Q, an imaginary quadratic field over Q, or a definite quaternion algebra over Q. Let (V, h) be a pair of a finite dimensional left *B*-vector space *V* over *B* and a positive definite hermitian metric *h* on *B* with respect to the unique positive involution of *B*. Denote by G = G(V, h) the group of similitudes of (V, h);

$$G = \{g \in GL_B(V); h(xg, yg) = n(g)h(x, y) (x, y \in V) \text{ for some } n(g) \in \mathbf{Q}^{\times}\}.$$

Let \mathscr{L} be a fixed genus of some lattices in V.

Problem 1. Calculate the class number $H = \sharp(\mathscr{L}/G)$ of \mathscr{L} .

It is known that Problem 1 can be solved at least in principle by means of the trace formula (cf. Hashimoto [3]), and some explicit calculations have been done by several mathematicians. Now, our main theme in this paper is the following Problem 2. Denote by L_1, \dots, L_H a complete set of representatives of the classes in \mathscr{L} . For each i $(1 \le i \le H)$, put

$$\Gamma_i = \operatorname{Aut}(L_i) = \{g \in G; L_i g = L_i\}.$$

It is easy to see that this is a finite group for each i, because of our assumption that h is positive definite.

Received May 6, 1987.